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Data-driven Short-term Traffic Flow Prediction in Urban Road Network
TANG Jinjun ZENG Jie DUAN Yixin
(School of Traffic and Transportation Engineering, Central South University, Changsha 410075)
Abstract: Based on the urban traffic background in the era of big data, this study summarizes the
recent researches in short-term traffic flow prediction, including statistical models, machine learning
models, traditional deep learning models, and advanced graph neural networks. According to the
prediction mode, we divide the existing studies into node-level prediction and network-scale
prediction. Furthermore, the former is divided into prediction methods with time-varying
characteristics and prediction methods with spatial correlation. The latter is divided into the
convolutional neural network (CNN) based models and graph neural network (GNN) based models,
and we discuss the topological graph construction in GNN detailly. Finally, we summarize the
drawbacks in the existing studies and point out the potential research direction for future works,
including introducing more traffic features, cooperative forecasting considering the spatiotemporal
characteristics of multi-source data, integrating spatial and temporal complex networks, etc.
Key words: intelligent transportation system; short-term traffic flow prediction; machine learning;
deep learning; urban road network

08 5

STIEPLTMAON RAOFERE . EE . A RULATIEN RSB S 8. 4IRS R ] 8
SPTMIRSRA 73, 7T 73 A S TR0 5 R e N P A S AR o e, A 3 A N ) S R A
LMK 2y 2, 5 AL 10min 5 T Y1503 AL T8 a4 /N RE L %L ) BURCE A TR
B S A D RAE 18] R R e i S At A, 08 M0 T AR SR AR S 00 - LN SR T2 1TS i
2 SEI T EERY,  RERSAE SRR SCIE NS . ShAERAR IR DL AR 5 WO DAL A5 5 T A 4 B A

Wk H . 2022-8-20

B FAEE (1983—), 5, i, RIEER, TERFRAIECONE A0 R4 5 A K E R
RE4WmH: BFARFSEST FWHH (52172310). #HE WA CH SR 2 HEEL LT H
(21YICZH147) . A BRI = & LW H (202004752) « R K 22 008 DK 20 1 H
(2020CX041)



Hle

AR A8 P T P38 B SR AU REAT 70288, LI S IR T T LA 73 DAy i 2 2 6 A 368 9 L0 AT 3 i
TE BRI P AR . Forp, ARECT R A BRSSP I T, ST R S S T R 55 1
HATHEVERIE), BRI & g B (A Rl I s, ARSI e N+ ., e
AT S e B B T R N R RS R, el T3 i R v A AR 56 1 5 B0 4% FA) [ e 42
SONAZIE L S IR TR W T, S BUOLAERLN A B s R sl T 45 HE A 4 R
NS TIE QN NI T

ARSCL AR TR T 5T BT T B AT P IIN, MR PR 2R 1) 2 (A1 4 LR BLA F Tl
I3 BT AT I I T K X RS ST, B T A A G L ML IR L4t
TR 2 IR DL R ) B 22 P 2 AR o 5 T3 TN 0 S IS, 4 1 A B e vh
FFAERIA R, R T AR T m St i

1 BFFEBR

1.1 B SR

Rt Be . er 8% 4 A0 I UK AR AR M n 8 SO I TR R e B0 R Sl T2 5 2 T
BT T CRIBR B alher Il 8% ) H: ) B 224 (0 7 S A G A5 J2 R T B4 i AR AR SR A i
R Horr, SCRTRURR S i 2 7 A B s AR SR IOR I M P st — B Rl oy oy BB
AL AN AR AL (8 T 0592545 2 R A TR A SRR R T 75 925 o T DURE P 21 17 FART R R0 g S 52
FidE, MRFEMGIN TS HARY A RA BRI (BB R B BT 1)
T R P SRS Il HE
1.1.1 BB ATIE IR AR A TR 77 3%

AZ ARSI T) G R A G U v B o B R K 2 — . B 1 DLV T RS2 it
12019 4 7 J SRS IE B B, HEAT S WAALE 73 A o M TR 28 FEOR T, Sl
NP ER e iy SAin R PSS AN R =178 SN N (PN S I (0% ok Rt o 1 R o
I Z N Ge it 2707 1% HLas s X TE AR IR L 2 21 U5 (EEONRI 22 2% K AR 4
SRR RS AT I [ A R

a) HARME b) JAARAIE 7
CRATA]— i A 2% A H oD CEAFA— &8 — i

K1 Al A RHE 2 B
N AT P AL, PRI AT ARERE 9. BB X =€ pi1 %o pazr- - %3 Tt I ZI Y

BN, % 9t I ZI RSB A, B R SE B rh s S e A B N B R R ()
NI BE 88 FAT 21 t + g I 2 ) A8 IE IR S 4

>A(t+q =F(x) D)



D ETEUSRTN % Guit 55 b A s A Il AR N T S, A
T A FH B 8] 3 510 20 B 7 SR AT T . FEFT A MGt 22 05, B A B s P H R AR Y
(autoregressive integrated moving average, ARIMA ) K AR 44 2 5 ief A2 388 37t 7 Aosk o B FH 5 M
Tz BB T 5 5 b e TR, AR )5 5 A AL, n-R/R 2 383 (Kalman-filter).
T SCH [ H A8 5 7 224558 (generalized autoregressive conditional heteroskedasticity model,
GRACH) %5, tHAR/EIX 48] T 2N . SN ET ARIMA BRI T —FlH
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