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Urban road network traffic efficiency evaluation considering the internal correlation of road network
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(1. Changsha Urban Research Institute of Construction Science, Changsha 410015, China;

2. College of Transportation Engineering, Central South University, Changsha 410075, China)

Abstract: In order to realize the evaluation of traffic efficiency under the large-scale urban road
network, based on the floating car data of Futian District, Nanshan District and Luohu District of
Shenzhen, this study proposed an evaluation method combining traffic accessibility and road traffic flow
characteristics, and obtained the reconstructed road network through map matching and network
reconstruction. Community discovery and clustering are carried out to explore the internal connection of
the road network and evaluate the traffic efficiency. This evaluation method takes into account the road
network structure and traffic attributes, evaluates the traffic efficiency of urban road network under the
condition of considering the internal correlation of road network, and propose targeted improvement
suggestions for actual road network through evaluation results. Compared with the traditional method,
the evaluation method proposed in this paper can identify the interaction between roads and modify the
evaluation results under the scale of the local road network, so that the evaluation results can reflect the
internal relationship between the traffic efficiency in different areas of the actual road network.
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Fig 5 Network Reconstruction Results Chart
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Fig 6 Frequency Distribution of Node Degree of

Reconstructed Road Network
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Fig 7 Road Network Node Degree Classification Chart
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1 0. 19 0. 18 49. 64
2 0. 27 0. 33 2859
3 0. 28 0. 22 22. 56
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Fig 8 Traffic Efficiency Results of Network
Nodes in Morning Peak
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Fig 9 Clustering Results of Road Traffic Flow
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Fig 10 Local Road Evaluation Results
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