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Accurate short-term metro passenger fow prediction is critical for urban transit management, yet existing methods face two key
challenges: (1) privacy risks from centralized data collection and (2) limited capability to model spatiotemporal dependencies. To
address these issues, this study proposes a federated learning framework integrating convolutional neural networks (CNNs) and
bidirectional gated recurrent units (BIGRU). Unlike conventional approaches that require raw data aggregation, our method
facilitates collaborative model training across metro stations while keeping data stored locally. Te CNN is employed to extract
spatial patterns, such as passenger correlations between adjacent stations, while the BIGRU captures bidirectional temporal
dynamics, including peak-hour evolution. Tis architecture efectively eliminates the need for sensitive data sharing. We validate
the framework using real-world datasets from ShenzhenMetro, and our key innovations include a privacy-preserving mechanism
through federated parameter aggregation, joint spatial-temporal feature learning without the need for raw data transmission, and
enhanced generalization across heterogeneous stations.

Keywords: bidirectional gated recurrent unit; collaborative training method; convolutional neural network; federated learning;
short-term passenger fow prediction

1. Introduction

Te imperative of precise short-term passenger fow pre-
diction is underscored by its pivotal role in the formulation
of trafc strategies and operational management within
urban metro systems. Tis predictive modality is not simply
a tool for decision-making within operational departments;
it is also instrumental in managing emergent situations [1].
For instance, during peak trafc periods such as morning
and evening rush hours, and in response to emergency
scenarios, the ability to forecast passenger fow trajectories
facilitates timely and efective reactions, thereby bolstering
the system’s capacity to accommodate surges in ridership.
Te signifcance of high-accuracy, real-time short-term

passenger fow forecasts in the orchestration and gover-
nance of urban metro networks cannot be overstated [2, 3].

Te advent of the 21st century has been marked by the
emergence of novel data processing technologies that have
propelled the evolution of urban metro systems. In this
milieu, the academic community has made substantial
contributions to the body of research on short-term pas-
senger fow prediction [4]. Collectively, these methodologies
have evolved from singular predictive techniques to more
sophisticated, integrated approaches [5]. Despite these ad-
vancements, several persistent issues and challenges remain.
Fluctuating metro passenger fows, both temporally and
spatially, coupled with typically lower weekend ridership on
individual metro lines, amplify the complexity of passenger
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fow forecasting. Specifc hurdles that continue to impede
the refnement of metro passenger fow prediction include
the following:

1. Te challenge of inadequate sample sizes and feature
sets in real-world metro passenger fow data has yet to
be fully addressed. Most extant machine learning or
deep learning methodologies for predicting metro
passenger fow are predicated on the availability of
ample historical data. However, these methods often
do not account for scenarios where there may be
a dearth of such historical data, which is a common
occurrence in real-world prediction settings. Te
assumption that a predictor will have access to a large
and comprehensive training dataset is not always
tenable, leading to potential shortcomings in pre-
dictive performance when faced with limited training
samples.

2. Te generalizability of predictive models remains
a concern. Owing to the disparate scheduling and
frequency of services across various metro operators
and lines, the temporal and spatial dynamics of
passenger fow data are inherently variable. Conse-
quently, models trained on data from a single metro
operator or line may not be directly transferrable to
other contexts, necessitating enhancements to the
model’s capacity to generalize across diverse operat-
ing environments.

3. Data privacy considerations are of paramount im-
portance. While data sharing among diferent metro
operators could theoretically enrich the training
dataset and thereby augment the model’s predictive
prowess—especially with regard to weekend travel
data where individual sample sizes are typically
smaller—the high confdentiality demands associated
with metro data inhibit such collaborative endeavors.
Tus, developing solutions that address these privacy
and confdentiality concerns is imperative.

Given these complexities, there is a compelling need to
innovate and refne predictive models that can transcend the
limitations of sample size, enhance generalizability, and
comply with stringent privacy requirements. Te pursuit of
such advancements is essential in advancing the operational
efcacy and service quality of urban metro systems.

Tis investigation addresses existing impediments in
short-term metro passenger fow prediction through the
implementation of a federated learning (FL)-based meth-
odology. By integrating the collaborative training approach of
FL, this study introduces an innovative prediction method
that aligns with the distributed architecture of federated
systems. Within this architecture, local clients—representing
various metro companies—retain equal status, while the
central server—potentially a trusted intermediary—facilitates
the aggregation of intermediate results.

Signifcantly, this paper delineates a novel approach
whereby the central server disseminates a global initial
model to all clients. Utilizing their proprietary data, each
client independently trains this model, thereby obviating the

need to expose sensitive data externally. Upon completion of
local training sessions, clients transmit model parameters,
specifcally the weights, to the central server. Te server then
performs an aggregation of these weights to refne themodel,
redistributing the updated version for subsequent rounds of
client-side training. Tis FL paradigm not only preserves the
privacy of client data but also leverages the collective data
resources of all participating entities to enhance model
accuracy and scenario generalization. FL ofers signifcant
advantages for subway passenger fow prediction. First, it
efectively protects user privacy by ensuring that data remain
local; only model updates are transmitted, thereby com-
plying with data protection regulations. Second, FL facili-
tates collaboration among diferent subway systems,
allowing them to jointly train models using their respective
passenger fow data without sharing raw data. Tis approach
enhances the model’s generalization capabilities, enabling it
to better adapt to various cities and passenger fow patterns.
In addition, this method supports real-time updates,
allowing for quick adaptation to changes in passenger fow
trends, such as during holidays or special events. Since only
model updates are transmitted, communication costs are
signifcantly reduced, making it particularly suitable for
resource-constrained subway systems. Moreover, FL efec-
tively addresses the issue of data imbalance by integrating
data features from diferent regions, thereby minimizing the
risk of overftting in any specifc area. Finally, the FL
framework is highly fexible and scalable, making it easy to
expand to include more participants, such as bus systems
and taxi companies. Tis adaptability makes future trafc
management and policy formulation more forward looking
and comprehensive.

Te salient contributions of this paper are as follows.

1. Introduction of a FL collaborative training approach
to model prediction. Tis method supplants the
conventional centralized training modality with
a distributed framework, decomposing complex
problems into manageable subissues that are con-
currently addressed by multiple devices. Such an
approach maximizes computational resources across
devices, signifcantly mitigating the computational
burden on individual entities and enhancing overall
efciency. Furthermore, this strategy ensures the local
retention of data, thereby safeguarding privacy.

2. Development of the convolutional neural net-
work–bidirectional gated recurrent unit (CNN–BI-
GRU) model. Tis model employs convolutional
operations within CNNs to distill salient features from
metro passenger fow data, followed by the application
of BIGRU to discern long-term, bidirectional tem-
poral dependencies within historical data, thereby
capturing the dynamic fuctuations of station-level
passenger fow.

3. Empirical validation of the proposed model using
passenger volume data from Shenzhen Metro sys-
tem—specifcally Lines 1, 2, and 3, each serving as a FL
client. Tese clients operate in isolation, with no
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interclient data sharing. Te initial CNN–BIGRU
model is locally trained by each client through FL,
followed by the server-led aggregation of the full
weight parameters. Te server then disseminates the
averaged model parameters to the clients, thereby
initiating subsequent rounds of communication and
iteration.

Te research thus contributes a scalable and privacy-
preserving method for enhancing the accuracy and adapt-
ability of short-term metro passenger fow predictions, of-
fering a robust solution to the multifaceted challenges
endemic to urban metro system operations.

Te rest of this paper is organized as follows. In Section
2, a brief review of the current research on short-term metro
passenger fow prediction and the development of FL is
provided. In Section 3, we describe in detail the collaborative
training method based on FL and the CNN–BIGRU model
proposed in this paper. In Section 4, we have conducted an
extensive comparison of short-term metro passenger fow
prediction methods, and discussed the improvement of the
FL collaborative training method proposed in this paper on
ordinary machine learning models. Finally, in Section 5, we
summarize the advantages and disadvantages of this study
and point out potential directions for future work.

2. Related Work

Tis section provides a brief review of related research,
including the development of metro passenger fow pre-
diction and the recent progress in FL algorithms.

2.1. Metro Passenger Flow Prediction. Research on short-
term passenger fow prediction can be divided into three
main types: (1) statistical methods such as linear regression
and Kalman fltering; (2) machine learning models such as
neural networks; and (3) hybrid methods that combine
optimization techniques with machine learning models. In
the early stages, due to limited technology, most prediction
methods relied on statistical models. For example, the au-
thors in [6] used a time series model to process data from
trafc detectors and predict passenger fow for the next
5minutes. However, statistical methods have clear draw-
backs. Tey perform poorly with nonlinear data, have
complex designs, and work inefciently, making them un-
suitable for handling the complexity and volume of pas-
senger fow data.

With the rapid growth of passenger fow data and its
complex patterns, machine learning has gradually become
the main method for short-term prediction. Compared with
statistical models, machine learning methods can better
handle nonlinear relationships and use multiple variables to
improve prediction accuracy. For instance, studies such as
[6, 7] and [8] used variables such as spatial-temporal data,
historical passenger fow, and weather conditions to uncover
hidden features in the data. In addition, parameter tuning
has been introduced to improve accuracy. For example, the
authors in [9] used an adaptive gray model that generated
operators from historical passenger fow data to describe

future trends while adjusting parameters automatically.
Similarly, the authors in [7] applied fuzzy neural networks
(FNNs) for urban road trafc fow prediction and combined
it with an online training process to adjust model coefcients
in real time, which improved its ability to adapt to trafc
changes.

Although machine learning models outperform statis-
tical methods, individual models also have limitations. For
example, CNNs are good at extracting spatial features but
struggle with temporal patterns, while LSTM models work
well with time series data but lack spatial learning abilities.
To solve this problem, researchers introduced hybrid
models. For instance, the authors in [10] combined CNN
and LSTM to extract both spatial and temporal features from
railway passenger fow data, enabling predictions 20min
ahead. Similarly, the authors in [11] proposed a combined
model using support vector regression (SVR) and LSTM,
showing it performed better than single models in predicting
unusual passenger fows. Besides combining models, re-
searchers also used data processing and optimization
techniques to improve prediction accuracy. For example, the
authors in [12] presented amultisource signal fusionmethod
that used a new signal decomposition algorithm along with
traditional time series models. Tis method created a mul-
tiobjective framework to extract information from diferent
data sources and predict upper and lower bounds for
passenger fow.

In recent years, research on predicting passenger fow at
the metro network level has increased. Unlike station-
specifc predictions, network-level predictions provide
a broader view of how metro lines operate across a city. For
example, the authors in [8] developed a spatiotemporal
graph convolutional neural network (STGCNN).Tis model
turned the metro network into a graph and used graph
convolutional neural networks (GCNNs) to predict pas-
senger fow (infows and outfows) at all metro stations in the
city. Te authors in [13] proposed a deep learning-based
model called EF-former, which focuses on the complex
temporal evolution characteristics of urban rail transit
(URT) passenger fow during large-scale events. Tis model
extracts both global and local temporal dependencies
through a parallel interactive attention module (PIAM) and
multiscale causal multihead self-attention (MSC-MSA),
combining regular outfow and additional outfow data to
predict the occurrence time of surges in passenger fow.
Experimental results demonstrate that EF-former signif-
cantly outperforms traditional benchmark models in terms
of prediction accuracy on large-scale event datasets, and
ablation experiments validate the efectiveness of its key
modules. Similarly, the authors in [14] designed the
PAG-STAN framework to address the challenges of real-
time, sparse, and high-dimensional origin-destination (OD)
demand forecasting during the pandemic. Tis framework
generates a dense demand matrix through a Real-Time OD
Estimation Module and a Dynamic Compression Module,
integrating heterogeneous data with a Masked Physical
Guidance Loss Function (MPG-loss) to enhance model
interpretability. Experiments show that PAG-STAN exhibits
robustness in both pandemic and regular scenarios, with
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ablation studies further confrming the necessity of its
module design. Meanwhile, the authors in [15] introduced
a trafc state estimation method that combines computa-
tional graphs with Physics-Informed Deep Learning (PIDL).
Tis method determines the fundamental parameters of
trafc using computational graphs and embeds them into
the PIDL framework, leveraging the dual advantages of data-
driven andmodel-driven approaches to reconstruct segment
trafc states in sparse data scenarios, such as loop detectors
and probe vehicles. Experimental results indicate that PIDL
outperforms pure deep learning and other baseline models,
validating the feasibility of integrating domain knowledge
with deep learning in trafc control.

2.2. FL Algorithms. FL is a concept introduced in recent
years and is widely used in felds such as healthcare and
banking. Its goal is to build a unifed model using distributed
datasets while keeping the data private. Te framework
usually includes two stages: model training and model in-
ference. During training, participants (clients) share
encrypted information related to the model instead of raw
data, which protects their data privacy.

Research on FL focuses on two main areas: algorithms
and communication. In terms of algorithms, researchers
work on reducing the cost of model updates and data
transmission, improving communication efciency. For
example, some studies suggest uploading only signifcant
updates, compressing gradients, or using sparse updates
with momentum to save bandwidth and speed up training.
For communication, when training time is limited, solutions
include adjusting local computation steps to reduce global
gradient diferences or selecting the maximum number of
devices to participate. Structural updates and heuristic
updates are common ways to lower the communication cost
between clients. Te Federated Averaging (FedAvg) algo-
rithm is widely used because it requires fewer communi-
cation cycles [16–19].

For example, the authors in [20] improved FL by
addressing communication costs, retention issues, and fault
tolerance. Te study showed that multitask learning could
solve statistical problems by creating task similarity graphs,
which act as communication graphs. During updates, clients
collaborate with others that share similar tasks, reducing
unnecessary communication with unrelated clients. Another
study [21] proposed a FL approach where client data refects
diferent tasks, and the global model adapts to these tasks.
Using Model-Agnostic Metalearning (MAML), the global
model can be fne-tuned for individual clients, helping it
adapt to new tasks. Recently, researchers have also focused
on improving FL efciency by enhancing device perfor-
mance or reducing communication delays. For example, the
authors in [22] explored ways to lower communication
delays to make FL frameworks faster and more cost-
efective, and they validated this idea through simulations.

In addition, many privacy-preserving techniques have
been proposed. For example, the authors in [23] combined
blockchain with FL to protect privacy through hierarchical

aggregation and ensure data traceability. Moreover, the
authors in [24] introduced a federated metalearning system
called Padp-Federmeta to address the impact of non-
independent and identically distributed (non-IID) data on
prediction accuracy. Tis system allowed personalized pri-
vacy handling for clients and smoothed gradient fuctuations
during communication, which sped up convergence. Te
authors in [25] proposed a hybrid short-term subway pas-
senger fow prediction model called DEASeq2Seq, which
signifcantly improves prediction accuracy through three
phases: decomposition, integration, and prediction, utilizing
a fully empirical mode decomposition technique that adapts
to noise. Similarly, the authors in [26] employed
a CNN–LSTM model to analyze the impact of spatial fea-
tures such as relative location, specifc location, and land use
on passenger fow prediction. Te study found that relative
location and the distance of stations from the city center
signifcantly afect prediction accuracy. Meanwhile, the
authors in [27] introduced the ASC–GRU model, which
combines multigraph convolutional networks with gated
recurrent units. Tis model not only takes into account the
topological relationships of the subway network but also
incorporates non-Euclidean spatial dependencies such as
adjacency, similarity, and correlation. Testing results show
that this model outperforms other benchmark models in
predicting passenger fow over long-time intervals and
across large-scale networks.

3. Methodology

Te FL framework proposed in this paper is composed of
local models at the client side working in collaboration with
a central server, as illustrated in Figure 1. On the client side,
the CNN–BIGRU prediction model is independently trained
based on local historical passenger fow data. Te CNN
module extracts local spatial features of the passenger fow
sequence (such as mutation patterns in adjacent time pe-
riods) through multiscale convolutional kernels. Sub-
sequently, the BIGRUmodule employs a bidirectional gating
mechanism—where the forward GRU captures historical
trends, and the backward GRU learns potential future
dependencies—to model the short-term and long-term
temporal dynamics, ultimately outputting the passenger
fow predictions for the next N steps. At the FL level, after the
local training is completed at each client, the model pa-
rameters are uploaded to the central server via a secure
channel.Te server utilizes the FedAvg algorithm to perform
weighted aggregation of the global parameters (with weights
determined by the proportion of data from each client),
generating a unifed optimized global model that is dis-
tributed to all clients to initiate the next round of training.
Tis process achieves a closed-loop iteration through “local
training⟶ parameter encryption and upload⟶ global
aggregation⟶model distribution,” balancing privacy
protection (with the original data always retained locally)
and knowledge sharing (through the integration of cross-site
temporal and spatial patterns).

4 Journal of Advanced Transportation
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3.1. CNN–BIGRUModel. Both CNN and GRU can be used
to capture efective features in network data. CNN extracts
the features of network data layer by layer through con-
volution calculation, and GRU improves the accuracy of the
model by capturing the dependence of long-term in-
formation in ordered data. Although CNN and GRU can
efectively extract hidden features, they cannot completely
capture the data sequence information from back to front, so
it is impossible to better extract hidden features in the
original data. To solve this problem, this paper uses a hybrid
neural network that combines CNN and BIGRU to capture
hidden data temporal sequence features.

Overly complex network structure often afects the
convergence efciency of FL, so a simple CNN with 2
convolutional layers and 1 fully connected layer is used to
train the model. Te specifc structure is shown in Figure 2.

We have added a standardized list of abbreviations in the
appendix, organized alphabetically for easy reference
(Table A3).

3.1.1. CNNs. CNN has the characteristics of local connec-
tion and weight sharing, which can efciently extract input
features. Te process of CNN calculation is that nonlinear
activation function is introduced after convolution. Te
pooling layer is used for feature selection to reduce the
number of parameters. After the feature is extracted by
convolutional neural network, it is generally sent to the full
connection layer [28].

3.1.2. BIGRU. Te GRU model is a variant of the LSTM
model, which combines the forget gate and the input gate in
the LSTM model into a single update gate. It also mixes cell
state and hidden state, as well as some other changes. Tis
allows it to achieve efciencies similar to LSTM in a simpler
structure [29].

In 1997, Schuster and Paliwal proposed a bidirectional
recurrent neural network (BiRNN) and used BiRNN to
conduct speech recognition experiments [30, 31]. One-way
RNN can only extract from previous inputs to predict the
current state, but BiRNN extract future data to improve their
accuracy. When predicting, BiRNN takes both forward and
backward values as input. BiRNNs also apply to BiLSTM and
BIGRU. In passenger fow prediction, the output at this time
is closely related to the information of the previous moment
and the information of the next moment. Terefore, this
paper selects the BIGRUmodel to learn the dynamic change
law of passenger fow at metro stations [32].

3.2. FL Collaborative Training. Artifcial intelligence models
require large datasets for training to achieve optimal per-
formance. However, data privacy concerns have become
a major barrier, as organizations and individuals are often
unwilling to share their data [33, 34]. To address this issue,
FL has emerged as an efective solution. FL enables col-
laborative model training by aggregating local model up-
dates from multiple parties without sharing raw data.
Participants in FL can be enterprises, individuals, or devices,
each with independent datasets and training processes. By
ensuring that data remain local, FL protects privacy while
facilitating the construction of a global machine learning
model. Unlike traditional distributed machine learning, FL
achieves joint model building without moving data out of
local storage.

Key features of FL are as follows:

1. Collaboration: FL involves two or more participants
jointly training a shared machine learning model
using their local datasets.

2. Data privacy: data remain with the owner and does
not leave the participant during the training process.

Model updata Model updata

Model updata

Model upLoad Model upLoad

Model upLoad

Central
server

Client 1

Local data Train
Local
model

CNN

BIGRU

Client 2

Local data Train
Local
model

CNN

BIGRU

Client n

Local data… Train Local
model

CNN

BIGRU

Figure 1: Methodological framework.
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3. Secure communication: communication between
participants can be encrypted, ensuring that no party
can infer others’ data from shared information.

4. Model performance: the collaboratively trained model
should perform comparably to models trained using
traditional methods.

FL typically involves two roles: local clients and a central
server. Local clients provide data and perform local training,
while the server aggregates the updates to build the global
model. For tasks such as short-term metro passenger fow
prediction, FL enables clients to protect data privacy while
collaboratively training models, improving accuracy and
generalization across scenarios.

Te architecture of FL is illustrated in Figure 3.
Te FL collaborative training process is as follows, which

mainly includes two parts [21].

3.2.1. Model Distribution. Te model is pretrained on the
server side to obtain the server-side model weight parameter
W. Trough the communication network, W is distributed
to the local end of each federation participating in the
training Gi. Each Gi receives the W distributed by the server,
updates the local model weight parameter Wi, and then uses
its own dataset Ddata as the local training sample set to
conduct local training and update Wi.

3.2.2. Model Upload. After the local model is trained, each
local Gi uploads the model weight parameters to the server

through the communication network, but there are multiple
transmission methods during the parameter transmission
process.

In order to avoid the risk of reverse pushing out the
corresponding data samples due to the leakage of gradient
parameters, this paper adopts the method of directly
transmitting the complete weight parameters without
transmitting the gradient and uploads the overall model
weight parameter Gi instead of the gradient generated
during the training of a single data sample after the local
model training of the participants is completed.

Te algorithm is as follows (see Algorithm 1):
Te advantages of FL are obvious: compared with

traditional centralized model training methods, FL does
not need to transmit a large amount of data to a single
device through the network, which saves a lot of network
communication consumption. At the same time, because
there is no need to centralize a large amount of data on one
device for calculation, it also saves the computing power of
each device. Te collaborative training principle of FL is
equivalent to decomposing a very complex overall problem
into multiple relatively simple small problems and then
using multiple devices to calculate these small problems.
Tis training mode makes full use of the computing power
of each device, and the computing pressure spread out by
each device is much smaller than that of centralized
computing. Tis greatly improves computing efciency,
and because only the weight parameters of the model are
transmitted through the network, the data of each client
can be retained locally, which greatly avoids the issue of

Input layer X1, X2, ..., Xt Y1, Y2, ..., Yt

Convolutional layer

Convolutional layer

Pooling layer

Fully connected layer

Output layer
…

…

…

…

Y1

X1 X2 Xt

w6 w6 w6

w5
w4 w4 w4

w5 w5

w3 w3 w3

w2 w2

w1 w1 w1

w2 w2
h1

h1' h2' ht'

h2 ht

Y2 Yt

Input layer

Backward
layer

Forward
layer

Output layer

BIGRU

CNN

Figure 2: CNN–BIGRU model.
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Client 1

Client 3 Client m

Client 2

Server

b

a
c

b

c

b

b

c

c

a: parameter aggregation b: model distribution c: model upload

Figure 3: Federated learning architecture.

Input:
Global model weight W (pretrained on the server)
Participating clients G � {G1, G2, . . . , Gn}
Local datasets Ddata for each client Gi

Number of training rounds R

Learning rate η
Output:
Updated global model weights W

Process:
1. Initialization:

Server initializes global model weight W.
2. Model Distribution:

For each training round r� 1 to R do:
a. Server distributes the global model weight W to all clients Gi ∈G.

3. Local Training (on each client Gi):
For each client Gi in parallel do:

a. Receive W from the server.
b. Use local dataset Ddata to update local model weights Wi:

Wi⟵Wi − η∗∇L (Wi; Ddata)
//Perform optimization using local dataset

c. Complete local training and obtain updated local weights Wi.
4. Model Upload:

Each client Gi uploads its updated local weights Wi to the server.
5. Aggregate Weights (on the server):

a. Server aggregates the weights uploaded by all clients:
W⟵􏽐(ni ∗Wi)/􏽐ni

//Weighted averaging where ni is the size of client Gi’s dataset
6. Repeat Until Convergence:

Repeat Steps 2–5 until the global model converges or the maximum number of rounds R is reached.
7. Output the Final Model:

Return the fnal global model weights W.

ALGORITHM 1: FL collaborative training.

Journal of Advanced Transportation 7
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data privacy disclosure. It can be said that the emergence of
FL has transformed users from bystanders of artifcial
intelligence to participants in the development of artifcial
intelligence.

3.3. Model Complexity Analysis

3.3.1. Te Computational Complexity of CNN–BIGRU.
For the CNN module with two convolutional layers,

OCNN � 2∗H′ ∗W′ ∗C
2 ∗K

2
. (1)

Among them, H′ ∗W′: output feature map size. C2:
number of channels. K2: convolutional kernel size. Te
number of convolutional layers is 2.

For 1-layer bidirectional GRU,

OBiGRU � LBiGRU ∗ 6∗T∗dhidden ∗ din + dhidden( 􏼁. (2)

Among them, T: enter the sequence length. din: GRU
input dimension. dhidden: the number of GRU hidden units.
LBiGRU: BiGRU layers (set to 1).

Te computational complexity of a fully connected layer
is

OFC � dinput + doutput. (3)

Among them, dinput: fully connected layer input di-
mension. doutput: the fully connected layer outputs
dimensions.

Based on the above modules, it can be concluded that the
complexity of CNN–BIGRU is

Omodel � OCNN + OBiGRU + OFC. (4)

3.3.2. Overall Complexity of FL Framework. Te complexity
of each round of communication in FL is

Ocommround � 2∗N∗ |θ|. (5)

Among them, N: the number of participating clients. |θ|:
the total number of model parameters.

If the number of training rounds is R, the communi-
cation complexity is

Ocommtotal � R∗Ocommround � 2∗R∗N∗ |θ|. (6)

Te local training complexity for each client is

Oclient � E∗ n∗Omodel. (7)

Among them, E: number of iterations for local training.
n: the sample size of local data for each client. Omodel: the
single computation complexity of the model (forward and
backward).

If there are N clients training in parallel, the total local
computational complexity for each round is

Ocommround � N∗Oclient � N∗E∗ n∗Omodel. (8)

When the total number of training rounds is R,

Ocommtotal � R∗Ocommround � R∗N∗E∗ n∗Omodel. (9)

Te complexity of each round of server-side aggregation
is

Oagground � N∗ |θ|. (10)

When the total number of training rounds is R,

Oaggtotal � R∗Oagground � R∗N∗ |θ|. (11)

Terefore, the overall complexity of FL is

Ototal � Ocommtotal + Ocomptotal + Oaggtotal. (12)

Substituting the above formula,

Ototal � 2∗R∗N∗ |θ| + R∗N∗E∗ n∗Omodel

+ R∗N∗ |θ|.
(13)

After simplifcation,

Ototal � R∗N∗ 3∗ |θ| + E∗ n∗Omodel( 􏼁. (14)

4. Experimental Analysis

4.1. Data Description. Tis paper selects the passenger fow
data of ShenzhenMetro in Guangdong Province, China.Te
main source of data is metro IC cards. Te passenger fow at
each metro station is calculated based on the metro gate
swiping records. Shenzhen Metro has a total of 11 lines and
166 metro stations. Tis paper selects the monthly metro
passenger fow data from May 1 to May 31, 2019. According
to the actual operation time of the metro system, this paper
only uses the records from 6 a.m. to 11 p.m. We summarize
the collected data. Specifcally, we summarize the passenger
fow data at each station at 10 minutes intervals and dis-
tinguish between inbound and outbound passenger fows. In
this paper, the most representative Lines 1, 2, and 3 are
selected as the research object. Te specifc metro route map
is shown in Figure 4.

4.2. Comparative Experiments. Taking the three Lines 1, 2,
and 3 in Shenzhen Metro system as three local clients, the
inbound passenger fow data of the transfer station on each
line were selected for experimentation. In this paper, the
number of communication rounds for FL is set to 50. CPU:
AMD Ryzen 7 5800H (8 cores, 16 threads, with a base
frequency of 3.2GHz); GPU: NVIDIA GeForce RTX 3070
(8GB VRAM, with 5888 CUDA cores); and RAM: 16GB
DDR4. Both the server and client are logically separated
through process isolation, simulating a distributed training
scenario with a total of three simulated clients, each allocated
an independent memory partition. Te analysis results of
model performance and hardware adaptability are provided
in Appendix Table A2.

SVR, LSTM, GRU, BILSTM, BIGRU, and BP were se-
lected as the local comparison model. Abbreviations of
station names in Figure 5 and Table 1 are as follows. Te
efciency of model training is shown in Appendix Table 2.

8 Journal of Advanced Transportation
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Line 3

Line 2

Line 1

Other metro line

Shenzhen City

Figure 4: Metro system in Shenzhen City.
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Figure 5: Continued.
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Table 1 shows the prediction performance of short-term
passenger fow prediction model FED based on FL, local
model CNN–BIGRU, and other machine learning models
on the three lines of Shenzhen Metro. It can be seen from
Figure 4 that the accuracy of the CNN–BIGRU model
proposed in this paper is higher than that of other machine
learning models among the local learning training models.
Among these local comparison models, the prediction
performance of SVR and BP models is the worst, which
caused by the fact that these two models simply input the
historical passenger fow data of the station and cannot
extract the space–time information contained in the his-
torical passenger fow data. Compared with these two
models, the LSTM and GRU models perform better. Tis is
because the LSTM and GRU models can efectively extract
the time series information in the historical passenger fow
data of each station and the long-term dependency re-
lationship among them. Tis also shows the importance of
time information in metro passenger fow prediction.
Compared with the ordinary LSTM and GRU models, the
BILSTM and BIGRU models have more complete network
structures and more sufcient forward and backward in-
formation extraction from the historical passenger fow data
of each station, which also makes them perform better in
prediction than the ordinary LSTM and GRUmodels. In the
CNN–BIGRU model, CNN extracts the characteristics of
passenger fow data layer by layer through convolution
calculation. BIGRU further improves the prediction

performance of the model by capturing the dependency of
medium and long-term information of ordered data. Te
fnal prediction performance is also due to a single BILSTM
and BIGRU model. Tis also proves that the CNN–BIGRU
model selected in this paper as the local prediction model is
efective and accurate.

It can also be seen from Table 1 that in most cases, the
RMSE value of FEDmodel and CNN–BIGRUmodel is close
to the MAE value. In most sites, the prediction performance
of the model using FL training is basically the same as that of
the model using ordinary deep learning training. Tis shows
that the prediction accuracy of FL can reach or even exceed
the average level of ordinary deep learning models. It also
proves that the collaborative training mode of FL is feasible
for metro passenger fow prediction.

In order to comprehensively demonstrate the efec-
tiveness of the method proposed in this paper and enhance
the credibility of the experimental results. We used statistical
testing methods to verify the signifcance of performance
diferences. Figure 6 shows the prediction error distribution
of the subway passenger fow predictionmethod based on FL
proposed in this paper.

Figure 6 shows the distribution of prediction errors
based on three clients (LINE1, LINE2, and LINE3), sys-
tematically validating the efectiveness and robustness of the
FL framework in subway passenger fow prediction from
a statistical perspective. Trough Gaussian ftting analysis,
the errors for the LINE1 client are primarily concentrated in
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Figure 5: Prediction results of each model on client. (a) BAZX. (b) CGM. (c) GS. (d) GWGY. (e) HZZX. (f ) LJ. (g) QHW.
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Table 1: Comparison of prediction results of each model in diferent clients.

BAZX CGM GS GWGY
RMSE MAE RMSE MAE RMSE MAE RMSE MAE

SVR 34.23 27.47 22.47 18.18 23.79 19.13 40.06 31.35
LSTM 25.28 19.08 14.3 10.37 16.18 13.46 25.5 18.95
GRU 26.76 21.46 14.35 10.92 16.16 13.22 25.05 18.46
BILSTM 21.79 16.32 10.19 8.61 11.95 9.01 20.65 15.14
BIGRU 23.68 17.85 10.42 8.93 10.85 8.96 21.96 16.31
BP 33.61 26.7 23.5 18.47 25.89 21.19 43.62 32.1
CNN–BIGRU 18.89 13.03 7.16 4.35 9.2 6.23 18.31 11.75
FED 18.66 13.59 7.3 4.72 9.47 6.31 19.29 12.7

HZZX LJ QHW ATS
RMSE MAE RMSE MAE RMSE MAE RMSE MAE

SVR 23.02 18.33 35.52 20.43 16.89 13.39 12.04 9.32
LSTM 17.06 12.49 29.86 18.25 12.9 10.39 8.05 6.33
GRU 17.21 12.84 27.37 16.08 11.88 9.38 8.02 6.32
BILSTM 16.8 12.25 25.07 15.1 10.86 8.32 7.03 5.29
BIGRU 17.71 13.05 23.93 14.51 9.9 7.41 7.06 5.36
BP 25.22 20.8 38.77 26.2 18.94 16.45 14.06 11.32
CNN–BIGRU 14.76 10.16 20.41 12.79 8.86 6.31 4.04 3.38
FED 15.07 10.84 22.4 13.6 6.96 5.52 4.08 3.33

DJY FT GSB HH
RMSE MAE RMSE MAE RMSE MAE RMSE MAE

SVR 34.29 28.55 39.77 31.77 25.78 20.84 32.02 26.44
LSTM 27.16 21.42 29.46 18.6 17.67 13.01 25.85 20.1
GRU 25.46 20.29 28.62 20.85 15.73 11.11 24.59 19.4
BILSTM 23.75 19.05 27.51 20.94 15.05 11.16 23.31 17.65
BIGRU 22.9 18.42 26.76 17.84 13.73 9.85 22.55 17.36
BP 36.19 30.53 41.78 31.84 27.7 21.95 35.47 29.91
CNN–BIGRU 19.46 15.96 23.77 17.43 7.75 6.17 19.23 14.17
FED 20.58 16.53 25.45 17.56 7.79 5.96 16.47 11.22

HQB HBL JT SJZC
RMSE MAE RMSE MAE RMSE MAE RMSE MAE

SVR 30.47 25.52 32.53 27.41 28.77 23.08 37.44 29.41
LSTM 20.02 16.06 23.45 17.96 19.69 15.09 24.38 20.04
GRU 18.99 14.76 22.79 17.64 18.67 14.67 23.33 19.34
BILSTM 17.33 13.47 21.8 16.45 15.96 12.11 19.89 16.02
BIGRU 16.15 12.3 20.18 15.76 15.77 12.99 19.12 15.87
BP 32.26 27.66 34.5 28.46 30.66 24.95 38.94 30.61
CNN–BIGRU 16.01 12.19 17.88 13.72 15.91 12.07 17.6 14.41
FED 15.14 11.5 16.36 13.26 15.79 13.13 16.79 13.93

SMZX HL HX LHC
RMSE MAE RMSE MAE RMSE MAE RMSE MAE

SVR 34.38 26.45 25.32 21.08 30.1 24.6 22.31 18.73
LSTM 26.17 20.84 17.04 13.61 19 14.46 15.26 13.64
GRU 24.71 19.14 15.42 12.97 18.93 14.96 15.33 13.78
BILSTM 22.43 18.33 14.23 11.92 17.78 14.4 12.25 9.68
BIGRU 22.46 18.42 13.76 11.03 16.56 13.21 12.36 9.77
BP 44.25 35.86 27.4 22.67 31.96 25.82 25.4 20.76
CNN–BIGRU 20.17 17.13 10.23 7.99 15.41 12.58 10.23 7.65
FED 19.39 16.88 9.4 6.76 13.67 11.96 10.52 7.84

SNG SS TB TXL
RMSE MAE RMSE MAE RMSE MAE RMSE MAE

SVR 40.03 29.57 26.76 21.55 24.22 20.32 29.49 22.69
LSTM 29.01 21.52 20.97 16.8 18.04 14.25 22.79 17.36
GRU 25.16 18.12 18.97 15.76 18.03 14.02 21.27 16.49
BILSTM 23.56 17.08 16.7 13.48 15.04 12.11 20.15 14.29
BIGRU 21.78 15.73 16.84 13.66 13.45 10.77 19.59 12.68
BP 39.75 30.95 27.3 22.07 27.01 22.05 30.27 22.51
CNN–BIGRU 19.4 14.7 14.77 11.46 13.16 10.2 16.38 13.62
FED 18.88 14.37 14.92 11.08 13.35 10.26 14.02 12.61
Note: Te bold font represents the smallest value (best).
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the range of −20–+20 (with a peak density of 0.025), having
a mean of −1.2 and a standard deviation of σ ≈ 12.3,
exhibiting a symmetrical distribution without signifcant
systematic bias. Te error range for the LINE2 client is
broader (−60 to +60), with the main density concentrated
between −30 and + 30, a mean of +4.8, and a standard de-
viation of σ ≈ 25.6. Tis indicates a slight right skew (with
a higher proportion of positive errors), suggesting that the
characteristics of its data are related to frequent fuctuations
in passenger fow during holidays, resulting in the model’s

insufcient prediction of positive deviations. In contrast, the
error distribution for the LINE3 client is the most con-
centrated, ranging from −30 to +30, with a peak density
reaching 0.06.Temean is −0.5 and the standard deviation is
σ ≈ 8.7, refecting the stability of commuter-dominated
passenger fow on this line.

Te CNN–BIGRU model achieves precise modeling of the
spatiotemporal characteristics of subway passenger fow
through a deep integration of CNNs and BIGRU. CNN excels
at extracting local spatial dependencies—such as the
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Figure 6: Gaussian distribution diagram. (a) Line 1. (b) Line 2. (c) Line 3.

Table 2: FED and CNN–BIGRU predictions over the weekend.

CNN–BIGRU FED
RMSE MAE RMSE MAE

CGM 34.12 28.72 14.26 11.51
HZZX 32.01 27.11 18.52 14.83
ATS 26.87 23.61 13.03 11.29
DJY 29.17 22.01 19.72 13.95
SNG 28.18 22.65 12.19 10.66
TB 31.41 25.06 15.38 12.63
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correlations in passenger fow between adjacent stations—and
multiscale spatial patterns, like regional passenger fow difu-
sion. Meanwhile, BIGRU captures long-term temporal de-
pendencies through its bidirectional gating mechanism, which
refects the dynamic evolution during peak hours, resulting in
a joint representation of “spatial and temporal” features.Te FL
framework further enhances the applicability of this archi-
tecture. Its distributed training mechanism allows each station
to locally train its CNN–BIGRU model while only sharing
encryptedmodel parameters instead of raw data.Tis approach
not only protects user privacy and sensitive information (in
compliance with regulations such as GDPR) but also addresses
the issue of data silos. In addition, the federated aggregation
algorithm merges the local model parameters from various
stations, implicitly learning global spatiotemporal pat-
terns—such as holiday passenger fow trends across the entire
network—while preserving the unique features of local models,
such as specifc stations’ unusual passenger fow patterns. Tis
process enhances the model’s generalization ability and ro-
bustness when dealing with complex and heterogeneous (non-
IID) data scenarios.

Te framework demonstrates signifcant advantages in
practical applications. First, the parameter compression and
asynchronous update strategies inherent in FL greatly reduce
the communication overhead between stations, accommo-
dating the bandwidth limitations of distributed subway sys-
tems. Furthermore, the localized training and incremental
update mechanisms support real-time responses to sudden
events (such as temporary fow restrictions), avoiding the
delays associated with full retraining in traditional centralized
models. Second, this framework ofers both scalability and
security: new stations can swiftly join the federated network
and utilize the global model to initialize local prediction tasks,
while ensuring that data remain local to reduce the risk of
centralized data breaches. Lastly, through cross-regional fed-
erated collaboration (for instance, in multicity subway net-
works), the model can leverage the global data sparsity to
enhance prediction accuracy (such as transferring learning
from niche station patterns) while avoiding the direct sharing
of sensitive data. Tis “global-local” collaborative optimization
mechanism provides high-accuracy, privacy-preserving, and
low-latency predictive support for dynamic scheduling in
smart transportation—such as emergency resource allocation
and train frequency adjustments—facilitating the evolution of
subway systems toward greater intelligence and resilience.

4.3.Model Stability Experiment. To verify the stability of the
subway fow predictionmethod based on FL proposed in this
article, we designed a series of control experiments. In the
experiment, the data loss rates of all clients were randomly
set to 5%, 10%, 30%, and 50%, respectively. Trough this
approach, we investigated the predictive performance of
CNN–BIGRU and FED models under abnormal data con-
ditions, as shown in Figure 7.

According to the experimental results shown in Figure 7,
it can be seen that as the data missing rate increases, the
performance of the two models gradually difers. For the 5%
and 10%missing rates, the performance of the two models is
relatively similar and the RMSE value is low. Both can

efectively predict subway trafc in the case of minimal data
loss. However, as the missing rate reached 30% and 50%, the
RMSE of the CNN–BIGRU model signifcantly increased,
and the prediction error gradually increased, showing poor
qualitative performance. Relatively speaking, the predictive
performance of the FED model is relatively stable, and even
in cases of high data loss, the RMSE value is still lower than
that of the CNN–BIGRU model. Tis indicates that FL
methods have strong robustness and can efectively handle
the impact of data loss in multiclient collaboration.

From these results, it can be seen that the FED model
based on FL exhibits signifcant advantages when facing data
loss. Especially in cases of severe data loss, FED models can
rely on data from other clients for compensation, thereby
reducing the impact of single client data loss on prediction
results. On the contrary, the CNN–BIGRU model has poor
adaptability to data loss and exhibits instability at high loss
rates, with a signifcant increase in RMSE values. Terefore,
FL methods have high fault tolerance in practical applica-
tions, especially suitable for scenarios where incomplete data
are processed, such as subway fow prediction tasks.

4.4. Small Sample Comparison. In order to test the pre-
diction performance of FL under small sample data, this
paper selects the weekend data for six transit stations on
Lines 1, 2 and 3 and compares the performance of FL and
general deep learning models on this dataset. Te specifc
comparison results are shown in Table 2.

It can be seen from Figure 8 that under the condition of
small sample size on weekends, ordinary deep learning models
present poor results due to insufcient training data. FL is
based on its unique learning mechanism (each local client uses
its own data to train and update the local model and then
uploads it to the central server). Te central server aggregates
the weight parameters and delivers them to realize the mutual
update of each client, which is equivalent to each client’s model
using all the data participating in FL training to a certain extent
so that it can still achieve better prediction performance when
the amount of single point data are insufcient.Tis shows that
the method of collaborative training based on FL can greatly
improve the generalization of ordinary prediction models. Te
defnition of abbreviations for site names is provided in
Table A1 of the appendix.

Tis refects another advantage of FL: when there are few or
missing data samples from one or some clients, FL collabo-
rative training can use data from other clients to help learners
train local models, greatly reducing the poor performance of
the fnal prediction due to the lack of data samples from
a client. In the same case, the traditional centralized model
training method cannot use the data from other clients and is
afected by the lack of data from a single client, so the trained
model performance is often poor. Te experimental com-
parison shows that the FL based collaborative training can
greatly improve the generalization of the prediction model.

4.5. Comparative Experiment of FL Models. To demonstrate
the efectiveness of the proposed FL-based subway passenger
fow prediction model, FED, we conducted comparative
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experiments using three FL models: FED–DEASeq2Seq [25],
FED–CNN–LSTM [26], and FED–ASC–GRU [27]. Te
experimental setup follows the specifcations outlined in
Section 4.2.

Figure 9 illustrates the convergence process of four FL
models (FED, FED–ASC–GRU, FED–CNN–LSTM, and
Weighted Loss) over 100 communication rounds, with the
vertical axis representing the normalized loss value (where
lower values indicate better performance) and the hori-
zontal axis indicating the number of communication
rounds. From Figure 9, it is evident that the FED model
exhibits a signifcant advantage. In the initial stages, the
diferences in weighted loss values among the models are
not very pronounced. However, as the rounds progress,
the FED model demonstrates a distinct superiority. Its
curve exhibits the most stable downward trend, allowing it
to rapidly reduce the weighted loss value in fewer rounds
compared to the other models, while exhibiting minimal
fuctuations in later stages. Tis indicates that the FED
model converges more quickly and efciently reaches

a relatively low loss level. Although the FED–DEASeq2Seq
model also shows a downward trend, it experiences
considerable fuctuations, indicating lower stability. Te
FED–ASC–GRU and FED–CNN–LSTM models initially
have slower descent rates and struggle to further reduce
loss values in the later stages. Te rapid convergence and
stability of the FED model suggest that it can learn the
patterns and regularities in the data more quickly and
accurately for subway passenger fow prediction tasks,
thereby reducing prediction errors and providing more
reliable passenger fow forecasts for subway operational
management.

4.6. Discuss the Necessity of Pretraining. Since the parame-
ters in the initial global model are randomly generated by
the server, this also leads to relatively low performance and
difculty in convergence of the initial model. It may even
afect the fnal result when the number of communication
rounds is not enough. In response to this situation, this
paper further discusses the steps of pretraining the model
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Figure 7: Te prediction performance of CNN–BIGRU and FED models under missing data conditions. (a) 5% missing rate. (b) 10%
missing rate. (c) 30% missing rate. (d) 50% missing rate.
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to the server before iteration. In general, pretraining refers
to the method of training an initial model using a portion of
the total historical data as pretraining data. However, this
paper considers that clients with large amounts of data have
a signifcant impact on the fnal model. Terefore, we only
select the same amount of data as pretraining data for each
client. Tis can minimize the excessive impact of clients
with large amounts of data on the fnal result. Taking
Shenzhen Metro Lines 1, 2, and 3 as three local clients, the
data of inbound passenger fow at two transfer stations on
each line on weekdays are selected for experimentation.Te
number of FL communication rounds is set as 50, and the
pretraining data are the inbound passenger fow data of
each station for six working days. Two FL methods, pre-
training and no pretraining, are used to make multistep
prediction, respectively. Te results are compared as shown
in Figure 10.

Figure 10 systematically compares the impact of
pretraining strategies on multisite subway passenger fow
prediction performance within a FL framework using two
metrics: RMSE (Figure 10(a)) and MAE (Figure 10(b)).
Te experiments selected six key stations from Shenzhen
Metro Lines 1, 2, and 3 (MAF, CCM, GWGY, FT, HQB,
HX, and SNG), representing diferent functional scenarios
such as commuting hubs, commercial areas, and transfer
stations. Te results indicate that the pretrained model
signifcantly outperformed the nonpretrained model
across all stations, with a notable reduction in volatility
for multistep predictions. For instance, using RMSE as an
example (Figure 10(a)), the pretrained group exhibited
a prediction error of 10.2 at SNG station (commuting
hub), which is a 35.4% reduction compared to the non-
pretrained group (15.8). At HX Station (commercial area),
where passenger fow fuctuates signifcantly, pretraining
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reduced RMSE from 18.3 to 13.7 (a decrease of 25.1%).
Tis demonstrates that pretraining efectively mitigated
the negative impact of data heterogeneity on the model’s
generalization capability by balancing the initial param-
eters. Te MAEmetric (Figure 10(b)) further corroborates
this trend, showing that the pretrained model achieved an
MAE of 7.5 at CCM station (transfer station), a 33.0%
reduction compared with the nonpretrained group (11.2).
In addition, the error distribution became more con-
centrated, with the standard deviation decreasing from 2.8
to 1.6, indicating enhanced adaptability of the model to
sudden increases in passenger fow.

Notably, pretraining signifcantly improved the stability of
multistep predictions. For instance, at GWGY station (tourist
hotspot), the RMSE for the nonpretrained model increased
from 12.4 in the frst step to 21.7 in the sixth step (an increase of
75.0%), while the RMSE for the pretrained model only rose
from 9.8 to 14.3 (an increase of 45.9%), refecting a 38.8%
reduction in error accumulation rate. Tis improvement stems
from the prior spatiotemporal feature extraction capability
endowed by pretraining; the initial parameters encoded
common patterns across stations (such as the periodicity of
peak hours), facilitating faster convergence to the global op-
timum during federated iterations and reducing local oscilla-
tions caused by initial randomness. Statistical tests indicated
that the RMSE diferences between the pretrained and non-
pretrained groups at all stations were signifcant (paired t-test,
p< 0.01), with the most notable diferences observed at HQB
station (p � 0.002) and FTstation (p � 0.001), confrming the
strong adaptability of the pretraining strategy for complex
stations (e.g., multiline transfers).

In addition, pretraining efectively balanced the infu-
ence of clients. In the absence of pretraining, the dominance
of data-rich SNG Station (average daily passenger fow of
120,000) resulted in infated prediction errors for other
stations (such as MAF station, RMSE� 14.5). However,
pretraining enforced equivalence in data sampling, reducing

MAF station’s RMSE to 10.8 (a decrease of 25.5%) and
narrowing the performance gap among the stations (RMSE
range) from 8.7 to 4.9. Tis indicates that pretraining curbed
the phenomenon of “data hegemony” and enhanced the
fairness of the federated framework.

4.7.ActualApplicationValue. Combining the characteristics
of CNN–BIGRU and FL, we believe that the method pro-
posed in this paper has signifcant potential applications in
the following real-world scenarios.

4.7.1. Short-Term Passenger Flow Management in Multisite
Urban Rail Transit Systems. Traditional passenger fow
forecasting methods typically require aggregating all data
at a central server for unifed analysis, which not only
poses signifcant privacy risks but also consumes sub-
stantial communication resources. In contrast, our
method incorporates a FL mechanism to enable distrib-
uted collaborative modeling across diferent stations or
urban areas. In addition, passenger fow data in urban rail
transit often include sensitive information such as pas-
sengers’ departure locations, destinations, and travel
times. By using FL, we can avoid uploading raw data to
a central server, thus protecting user privacy. Leveraging
the efcient modeling capabilities of CNN–BIGRU, our
approach can capture the dynamic characteristics of
passenger fow in real-time and provide timely pre-
dictions, assisting operational departments in dynami-
cally adjusting transportation plans.

4.7.2. Passenger Diversion Management in Integrated
Transportation Hubs. In major transportation hubs such as
airports and high-speed rail stations, passenger fow is often
highly variable and infuenced by external factors such as
weather and fight/train schedules. Our method facilitates
cross-system collaborative modeling by integrating
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Figure 10: Comparison of prediction results with and without pretraining. (a) RMSE. (b) MAE.

16 Journal of Advanced Transportation

 1409, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/atr/8834513 by Z

eng Jie - H
ong K

ong U
niversity O

f , W
iley O

nline L
ibrary on [22/05/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



distributed data from various transportation subsystems
(such as subways, buses, and taxis) through a FL framework,
establishing comprehensive passenger fow prediction
models to better analyze distribution patterns across dif-
ferent modes of transport. By optimizing transfer resource
allocation, we can dynamically adjust waiting areas, ticketing
channels, and related service facilities after predicting pas-
senger fow distribution during peak periods, thereby im-
proving transfer efciency.

4.7.3. Distributed Deployment on Edge Devices. Given that
the CNN–BIGRU model proposed in this study has
a relatively low computational burden and the FL
framework supports distributed deployment, our method
can run on edge devices within trafc management sys-
tems (such as station servers or local terminals at
transportation hubs). Tis approach eliminates the delays
associated with uploading data to a central server,
resulting in more timely predictions. Te model’s light-
weight structure, particularly the design of BIGRU
compared with LSTM, makes it suitable for use in
resource-constrained environments, such as metro sta-
tions or mobile dispatch terminals.

4.7.4. Enhancing Operational Efciency of Transportation
Systems. By providing high-precision short-term passenger
fow forecasts, our method enables refned operations in
train scheduling, resource allocation, and station manage-
ment, reducing resource waste and enhancing passenger
satisfaction. For instance, when a signifcant increase in
passenger fow is predicted for a specifc route or station
during peak periods, we can proactively increase train fre-
quencies or deploy additional staf. Conversely, during of-
peak periods, the frequency of train departures can be ap-
propriately reduced based on forecast results, thereby
lowering operational costs.

4.7.5. Improving Passenger Experience. Alleviating conges-
tion during peak periods and reducing passenger wait times
are crucial for enhancing the travel experience. Our method,
through accurate forecasting of peak passenger fow and
distribution, can assist trafc management authorities in
developingmore optimized diversion plans. For example, we
can release prediction information in advance to encourage
passengers to stagger their travel times or plan more optimal
transfer routes. Furthermore, optimizing the distribution of
waiting areas or automatic ticket machines based on forecast
results can help reduce queue times.

4.7.6. Supporting Smart City Development. Our method,
which integrates privacy-preserving FL mechanisms, serves
as a reference model for large-scale trafc data analysis
within smart cities, thereby supporting safer and more
sustainable transportation management strategies. It enables
data collaboration across diferent modes of transportation
(such as subways, buses, and shared bicycles), facilitating
comprehensive management of multimodal transportation
systems and providing theoretical and technical support for
future automated trafc scheduling systems.

5. Conclusion

Tis paper introduces FL as an innovative method for
collaborative model training, aimed at addressing several key
challenges: the insufcient quantity and features of subway
passenger fow data, the poor generalization capabilities of
existing prediction models, and the high privacy concerns
associated with subway passenger data [21]. We propose
a short-term passenger fow prediction method based on FL,
which frst constructs a CNN–BIGRU model. Tis model
utilizes convolutional calculations via CNN to extract fea-
tures from subway passenger fow data, while the BIGRU
captures long-term dependencies from past to future,
allowing for the learning of dynamic changes in passenger
fow at subway stations. Our approach employs joint
learning and collaborative training, replacing traditional
centralized model training methods. Tis efectively miti-
gates the need to transmit large volumes of data over the
network, thereby safeguarding data privacy. Notably, the
method still achieves superior prediction performance even
in scenarios with limited single-point data. We tested the
predictive efectiveness of FL using small sample data and
discussed the necessity of model pretraining, demonstrating
its importance in enhancing prediction performance.

However, our current study has certain limitations, pri-
marily in the following areas: frst, due to the high privacy
concerns surrounding subway passenger fow data, we were
only able to access the dataset from Shenzhen Metro, which
restricts validation across a broader range of subway datasets
and impacts the generalization ability of our short-term pas-
senger fow prediction method. Second, the Shenzhen Metro
dataset was collected solely from smart card data, which may
result in incomplete data. Lastly, this study focuses exclusively
on the analysis and prediction of subway passenger fow data,
without considering other potentially infuential factors such as
weather changes and signifcant events.

In light of these limitations, future research will focus on
the following directions. (1) Optimizing communication
efciency in FL: we will explore strategies to enhance
communication efciency by compressing model parame-
ters, reducing communication frequency, and utilizing ef-
fcient transmission protocols. In addition, we will consider
the application of model pruning and quantization tech-
niques to lessen communication burdens and improve
overall performance. (2) Enhancing model adaptability to
non-IID data: we aim to discuss the design of more robust
algorithms to address discrepancies in data distribution
across diferent subway lines or regions. Tis will include
exploring adaptive optimization techniques, methods of
ensemble learning, and the introduction of more fexible
aggregation strategies to improve the model’s predictive
capabilities when dealing with non-IID data. (3) Integrating
more external factors (such as weather and events): we will
incorporate external factors such as weather changes and
signifcant events into the model’s input features. Tis will
involve methodologies for data acquisition and feature ex-
traction. By leveraging time series analysis and feature en-
gineering techniques, we aim to enhance the model’s
sensitivity and adaptability to various external infuences.
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Appendix A: Notation

When simulating a federated architecture with a single
device, the total training time increases linearly with the
number of clients, but asynchronous aggregation strategy
can reduce waiting latency by 15%. Te RTX 3070 GPU has
a memory usage rate of only 76% (peak of 6.2/8GB), in-
dicating that the model supports scaling to larger sizes or
more complex structures.

Data Availability Statement

Te data that support the fndings of this study are available
from the corresponding author upon reasonable request.

Ethics Statement

Tis study does not violate any ethical standards.

Disclosure

A preprint has previously been published [36].
Te authors acknowledge that an earlier version of this

manuscript was posted as a preprint on Research Square and
can be accessed at the following link: https://papers.ssrn.
com/sol3/papers.cfm?abstract_id=4403252.

Conflicts of Interest

Te authors declare no conficts of interest.

Author Contributions

Guowen Dai: coding, methodology, modeling, and paper
writing. Jinjun Tang: conceptualization and reviewing and
editing. Jie Zeng: data preprocessing. Yuting Jiang: text
correction. All authors reviewed the manuscript.

Funding

Tis research was funded in part by the Key R&DProgram of
Hunan Province (Grant no. 2023GK2014), the National
Natural Science Foundation of China (Grant no. 52172310),
the Transportation Science and Technology Plan Project of
Shandong Transportation Department (Grant no. 2022B62),
the Key Technology Projects in the Transportation Industry
(Grant no. 2022-ZD6-077), Shandong Provincial Natural
Science Foundation (Grant no. ZR20210F137), Central
South University Graduate Student Independent Explora-
tion and Innovation Project (Grant no. 2023ZZTS0340), and
Fundamental Research Funds for the Central Universities of
Central South University (Grant no. 2025ZZTS0107).

References

[1] L. Liu, Y. Liu, and X. Ye, “Multi-Sequence Spatio-Temporal
Feature Fusion Network for Peak-Hour Passenger Flow Pre-
diction in Urban Rail Transit,” Transportation Letters 17 (2024):
86–102, https://doi.org/10.1080/19427867.2024.2327805.

[2] A. A. Makhdomi and I. A. Gillani, “GNN-based Passenger
Request Prediction,” Transportation Letters 16, no. 10 (2023):
1237–1251, https://doi.org/10.1080/19427867.2023.2283949.

[3] F. L. Jin, W. Q. Tian, and L. Wang, “High-Speed Railway
Passenger Flow Equilibrium Among Trains of Common Lines
Based on Travel Behavior Analysis under Dynamic Pricing,”
Transportation Letters 16, no. 1 (2024): 27–42, https://doi.org/
10.1080/19427867.2022.2160291.

[4] R. Bridgelall, “Using Artifcial Intelligence to Derive a Public
Transit Risk Index,” Journal of Public Transportation 24
(2022): 100009, https://doi.org/10.1016/j.jpubtr.2022.100009.

[5] C. Li, J. Huang, B. Wang, Y. Zhou, Y. Bai, and Y. Chen,
“Spatial-Temporal Correlation Prediction Modeling of

Table A1: Abbreviation defnition.

Abbreviation Description
BAZX Bao An Zhong Xin
CGM Che Gong Miao
GS Guang Sha
GWGY Gou Wu Guang Chang
HZZX Hui Zhan Zhong Xin
LJ Lao Jie
QHW Qian Hai Wan
ATS An Tuo Shan
DJY Da Ju Yuan
FT Fu Tian
GSB Gang Sha Bei
HH Hou Hai
HQB Hua Qiang Bei
HBL Huang Bei Ling
JT Jing Tian
SJZC Shi Jie Zhi Chaung
SMZX Civic Center
HL Hong Ling
HX Hua Xin
LHC Lian Hua Village
SNG Shao Nian Gong
SS Shi Sha
TB Tian Bei
TXL Tong Xin Ling

Table A2: Model training efciency.

Task phase
Average time
consumption
(per round) (s)

GPU memory usage
peak (GB)

Client local
training 78 6.2

Server global
aggregation 12 1.1

Table A3: Abbreviation.

Abbreviation Full name
CNN Convolutional neural network
BIGRU Bidirectional gated recurrent unit
FL Federated learning
RMSE Root mean square error
MAE Mean absolute error
BIRNN Bidirectional recurrent neural network
SVR Support vector regression
LSTM Long short-term memory
BILSTM Bidirectional long short-term memory
BP Back propagation

18 Journal of Advanced Transportation

 1409, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/atr/8834513 by Z

eng Jie - H
ong K

ong U
niversity O

f , W
iley O

nline L
ibrary on [22/05/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4403252
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4403252
http://doi.org/10.1080/19427867.2024.2327805
http://doi.org/10.1080/19427867.2023.2283949
http://doi.org/10.1080/19427867.2022.2160291
http://doi.org/10.1080/19427867.2022.2160291
http://doi.org/10.1016/j.jpubtr.2022.100009


Origin-Destination Passenger Flow under Urban Rail Transit
Emergency Conditions,” IEEE Access 7 (2019): 162353–
162365, https://doi.org/10.1109/ACCESS.2019.2951604.

[6] T. Tomas, W. Weijermars, and E. van Berkum, “Predictions
of Urban Volumes in Single Time Series,” IEEE Transactions
on Intelligent Transportation Systems 11, no. 1 (2010): 71–80,
https://doi.org/10.1109/tits.2009.2028149.

[7] H. Yin, S. Wong, J. Xu, and C. Wong, “Urban Trafc Flow
Prediction Using a Fuzzy-Neural Approach,” Transportation
Research Part C: Emerging Technologies 10, no. 2 (2002):
85–98, https://doi.org/10.1016/s0968-090x(01)00004-3.

[8] Y. Han, S. Wang, Y. Ren, C. Wang, P. Gao, and G. Chen,
“Predicting Station-Level Short-Term Passenger Flow in
a Citywide Metro Network Using Spatiotemporal Graph
Convolutional Neural Networks,” ISPRS International Jour-
nal of Geo-Information 8, no. 6 (2019): 243, https://doi.org/
10.3390/ijgi8060243.

[9] J. Ye, Z. Xu, and X. Gou, “An Adaptive Grey-Markov Model
Based on Parameters Self-Optimization with Application to
Passenger Flow Volume Prediction,” Expert Systems with
Applications 202 (2022): 117302, https://doi.org/10.1016/
j.eswa.2022.117302.

[10] X. Ma and J. Zhang, “Parallel Architecture of Convolutional
Bi-directional LSTM Neural Networks for Network-wide
Metro Ridership Prediction,” IEEE Transactions on In-
telligent Transportation Systems 99 (2018): 1–11.

[11] J. Guo and Z. Xie, “Short-Term Abnormal Passenger Flow
Prediction Based on the Fusion of SVR and LSTM,” IEEE
Access 1 (2019).

[12] H. Li, K. Jin, S. Sun, X. Jia, and Y. Li, “Metro Passenger Flow
Forecasting Tough Multi-Source Time-Series Fusion: An
Ensemble Deep Learning Approach,” Applied Soft Computing
120 (2022): 108644, https://doi.org/10.1016/j.asoc.2022.108644.

[13] J. Zhang, S. Mao, S. Zhang, J. Yin, L. Yang, and Z. Gao, “EF-
Former for Short-Term Passenger Flow Prediction during
Large-Scale Events in Urban Rail Transit Systems,” In-
formation Fusion 117 (2025): 102916, https://doi.org/10.1016/
j.infus.2024.102916.

[14] S. Zhang, J. Zhang, L. Yang, F. Chen, S. Li, and Z. Gao,
“Physics Guided Deep Learning-Based Model for Short-Term
Origin-Destination Demand Prediction in Urban Rail Transit
Systems under Pandemic,” Engineering 41 (2024): 276–296,
https://doi.org/10.1016/j.eng.2024.04.020.

[15] J. Zhang, S. Mao, L. Yang, W. Ma, S. Li, and Z. Gao, “Physics-
informed Deep Learning for Trafc State Estimation Based on
the Trafc Flow Model and Computational Graph Method,”
Information Fusion 101 (2024): 101971, https://doi.org/
10.1016/j.infus.2023.101971.
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