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ARTICLE INFO ABSTRACT

Keywords: To alleviate traffic congestion and reduce vehicle emissions, the use of hard shoulder running (HSR) has emerged
Highway ) as a sustainable and cost-effective active traffic management technology. However, optimizing the utilization of
Hj:d Shgmder Running HSR remains a critical challenge for improving highway traffic congestion. To tackle this issue, the Multi-Agent
M D,DP . Deep Deterministic Policy Gradient with spatio-temporal constraints (STC-MADDPG) algorithm based on multi-
Spatial-temporal constrains . s . . . . .

SUMO agent reinforcement learning is proposed in this paper. To verify the effectiveness of the proposed algorithm, the

present study utilizes a Simulation of Urban Mobility (SUMO) platform to construct a simulation environment.
The optimal HSR strategy is then determined for four different service levels of highways. Additionally, the
granularity of control is adjusted by varying the number of agents, allowing for a comprehensive analysis and
evaluation of the varying effectiveness of different control levels across different service levels. Through in-depth
investigation into the two strategies under the fourth service level, it is discovered that fewer sections each agent
controls yields better results when congestion becomes more severe. The experimental results clearly demon-
strate the superiority of the optimized strategy for HSR using the STC-MADDPG algorithm, compared to the “no
open” strategy. Specifically, the maximum reductions achieved in terms of total vehicle travel time, Time In-
tegrated Time-to-collision, CO emissions, CO, emissions, and NOyx emissions are 37.4 %, 34.1 %, 28.0 %, 17.1 %,
and 27.2 % respectively. This comprehensive evaluation of the algorithm’s effectiveness covers three key aspects:
driving efficiency, driving safety, and environmental protection. The findings conclusively demonstrate the
positive impact of the proposed algorithm on all three fronts.

1. Introduction gained widespread adoption worldwide, with over 700 miles of dynamic

HSR implemented in Europe alone [5]. The impact of different HSR

Highway hard shoulder running (HSR) is an active traffic manage-
ment measure aimed at temporarily utilizing the hard shoulder, which
can effectively reduce congestion and enhance traffic flow by increasing
road capacity [1]. By allowing vehicles, or specific types of vehicles, to
use the hard shoulder as an additional lane, the pressure on the main
road can be alleviated, particularly during peak hours. The imple-
mentation of this measure typically relies on real-time traffic flow
conditions, and the decision to open the hard shoulder is made by traffic
management operations [2].

The implementation of HSR can be categorized into three main types:
BOS (bus-on-shoulder), static, and dynamic HSR [3]. Among these, dy-
namic HSR stands out as it allows the temporary utilization of shoulders
as additional lanes based on real-time traffic conditions, without being
restricted to specific time periods or vehicle types [4]. This approach has
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strategies on highway operation systems has been the subject of
numerous studies conducted by researchers. These studies aim to un-
derstand and analyze the effects and benefits of various strategies,
shedding light on their implications for optimizing overall highway
operations.

Several studies have investigated the impact of HSR strategies on
highway operational efficiency, emissions, and safety, among other
factors. These studies have revealed that the use of HSR strategies can
reduce delays, total consumption time, emissions, and road congestion,
increase average speeds and throughput, and improve highway accident
management. However, the current literature lacks proper analysis of
the differences between strategies and how to optimize their impact
across various indicators. Moreover, there is a lack of problem-specific
analysis for different traffic flow scenarios, and the environmental
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setting conditions are often unspecified. While some studies have
explored reasonable and effective HSR strategy opening to improve the
impact of strategies on highway efficiency, many such studies use
traditional heuristic algorithms such as genetic algorithms to optimize
travel time while ignoring advanced optimization techniques such as
dynamic control methods. In summary, current research on HSR stra-
tegies has several limitations. Firstly, existing studies lack sufficient
depth of analysis on the impact of different strategies on highway effi-
ciency, safety, and other factors, and application effects of various HSR
strategies are vaguely compared. Secondly, there is limited research on
how to optimize HSR strategies to improve highway operational effi-
ciency or traffic safety. Using traditional heuristic algorithms in the
optimization making its inadequate ability for adapting and optimizing
dynamic HSR control methods. Lastly, there is inadequate research on
optimizing HSR strategies under different traffic flow conditions.

In order to address the shortcomings of the above study and to
optimally solve the HSR control strategy problem under different traffic
flow states, this paper proposes the Multi-Agent Deep Deterministic
Policy Gradient with spatio-temporal constraints (STC-MADDPG) algo-
rithm. Initially, the study mathematically models the HSR control
optimization problem and introduces a spatio-temporal constraint for
the open strategy. Subsequently, this paper integrates the Multi-Agent
Deep Deterministic Policy Gradient (MADDPG) algorithm and spatio-
temporal constraints to formulate the STC-MADDPG algorithm.
Furthermore, the HSR control strategy is optimized by applying varying
numbers of agent control methods at four levels of service on the
highway. The optimized strategy exhibits benefit in terms of efficiency,
safety, and environmental impact. Lastly, an extended study examines
four levels of service, comparing the effectiveness of two control gran-
ularity strategies utilizing four and eight agents during severe conges-
tion. Through the aforementioned research components, this paper
provides a mathematical description of the HSR strategy optimization
problem. It presents a feasible and effective method for optimizing so-
lutions across different service levels. Moreover, the analysis compares
and evaluates the impact of different control granularity strategies in the
context of severe congestion, offering valuable insights for engineering
applications.

The structure of this paper is described, Section 2 presents the
problem to be optimised and the mathematical formulation of the
problem. Section 3 elaborates on the proposed methodology. Section 4
describes the setting of the various elements of the experimental envi-
ronment. Section 5 analyses the experimental results. Section 6 sum-
marizes the results and shortcomings of the research.

2. Literature review

The HSR was introduced early in several European countries as a
traffic management measure. In Germany, the utilization of hard
shoulders, either temporarily or permanently, has been studied since
2000, and has significant implications for road safety, traffic flow
management, and highway operation [6]. By using the hard shoulder as
an additional travel lane, it has been observed that highway congestion
can be reduced, and traffic flow efficiency can be increased [7-20].
Specifically, the implementation of the dynamic HSR strategy has been
found to effectively reduce departure delays [21], significantly reduce
travel times during peak commuting hours [19], increase average
speeds, and enhance vehicle throughput [22]. Additionally, the dynamic
HSR has a crucial role to play in reducing vehicle emissions and envi-
ronmental pollution. For example, Truck-Specific HSR (T-HSR) strate-
gies have been proposed and implemented to reduce vehicle CO5 and
NOx emissions [23]. HSR measures have also been employed theoreti-
cally as well as practically to decrease fuel consumption and emissions
by up to 41-44 % [20]. There exist numerous studies on the impact of
implementing dynamic HSR strategies on road safety [6-9,19,21-34].
According to these studies, the implementation of dynamic HSR has
proven to effectively reduce congestion and other causes of accidents,
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thereby decreasing collision rates and enhancing safety on urban
weaving sections, reducing the impact of episodic accidents [27,31]. In
conclusion, reasonable and effective HSR strategies can alleviate high-
way congestion, improve operational efficiency, reduce accidents, and
enhance highway safety.

The numerous benefits of HSR strategies for all aspects of highways
have led to extensive research from scholars. Kellermann et al. proposed
five ways to adapt to changing traffic conditions by opening the hard
shoulder appropriately. It was discovered that mobile HSR strategies
improve traffic quality, reduce congestion, do not compromise safety,
are cost-effective to maintain, and incur lower costs than adding a third
lane [9]. The substantial benefits of HSR strategies relative to the in-
vestment have prompted national researchers to consider their imple-
mentation. In the United Kingdom (UK), Chase et al. outlined the
advantages and limitations of HSR, emphasizing that with the right in-
formation, targeted driver education, and training, implementation of
HSR strategies could be significantly successful [31]. In Germany,
Geistefeldt et al. conducted a study on the temporary use of hard
shoulders on the A3 and A5 highways in the Black Forest region to
analyze the effects on highway traffic flow and road safety. The study
revealed that HSR could increase capacity by 20-25% without
compromising road safety [10]. In France, Aron et al. evaluated and
analyzed two partially implemented hard shoulder strategies and found
that HSR could either increase or decrease the number of accidents [25].
Furthermore, Lemke et al. pointed out that in 2010, the pilot distance on
the hard shoulder in Germany was already 200 km [32]. The extensive
implementation of HSR strategies and its impact on highway safety have
been studied by numerous researchers. According to Kononov et al., HSR
was effective in reducing collision rates by decreasing traffic volume per
lane, with safety benefits outweighing adverse effects [26]. Addition-
ally, in the works of [33], Zeng et al. improved the safety of hard
shoulders using a joint empirical Bayesian approach. In the works of
[30], Maurice et al. carried out a safety assessment of the implementa-
tion of dynamic HSR measures on braided sections of urban highway in
French, assessed the impact of HSR strategies on highway safety.

Effectively implementing the HSR strategy requires identifying the
appropriate trigger conditions and controlling critical elements such as
control time, control space, and other parameters. Scholars have pro-
posed different solutions to optimize the strategy. Li et al. investigated
an optimal framework for managing highway traffic congestion with
three control modes: ramp metering, variable speed limit, and hard
shoulder running. They took the problem as an integer linear pro-
gramming task, with the objective of reducing the total highway delay,
and used the IBM CPLEX to solve it [18]. Li et al. proposed a genetic
algorithm with time windows to optimize the hard shoulder control
strategy, which reduced the total travel time of the road network by
30.61 % [35]. Zhou et al. proposed a reinforcement learning algorithm,
namely the Q-learning algorithm, to optimally coordinate Variable
Speed Limit (VSL) and HSR control strategies. Experimental results
showed that the proposed method reduced travel time by up to 27 %
[36]. Hussein et al. introduced a hybrid operating system for HSR that
consists of three modules, namely a data manager, technology engine,
and transportation management center [37]. By using road sensors to
collect traffic data and applying hyperbolic fuzzy affiliation functions, it
was possible to analyze real-time traffic flow states and decide on acti-
vating hard shoulder control. The transportation management center
executed these decisions. Fan et al. employed the K-means clustering
algorithm to categorize traffic states into three clusters and used factor
analysis and TOPSIS methods to identify the ideal conditions for acti-
vating hard shoulders [38]. Arora et al. considered the dynamic com-
bination of VSL and HSR to design an integrated control strategy based
on model predictive control. This strategy increased the average speed
and vehicle throughput by 21.09% and 33.44 %, respectively, in
experimental studies carried out on the Deerfoot Trail section in Cal-
gary, Alberta [22]. Although there is little research on HSR strategy
optimization methods, characteristic methods such as genetic
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Fig. 1. Strategy description for HSR.

algorithms, integer programming methods, and Q-learning methods
have been proposed. However, all these methods are appropriate for
static control methods. They pose encoding solutions that result in
dimensional explosion, especially for genetic algorithms when the path
length is long and the control time is uncertain. Q-learning is a rein-
forcement learning algorithm that is inefficient and unsuitable for
solving problems with large action state spaces. Advanced models such
as multi-agent deep reinforcement learning algorithms are efficient in
solving control and management problems. The problem is divided into
more subproblems, each of which is solved separately by one agent.
Roadway-based traffic control, such as ramp meter, variable speed limit,
hard shoulder running, traffic signal control, etc., can achieve better
results by applying the MARL compared to traditional methods. Chen
et al. used a multi-agent reinforcement learning algorithm to control the
hybrid vehicles for ramp meter, which resulted in an increase in the
average speed of the vehicle fusion and the conflict rate compared to the
traditional algorithms [39]. Fang et al. used a multi-agent proximal
optimization algorithm for variable speed limit control, which resulted
in a more stable traffic flow on the highway and reduced the waiting
time of the entire network by 15.8 % [40]. Based on the multi-agent
reinforcement learning algorithm, the W-Learning algorithm was used
to control the congested zone section and dynamically adjust the speed
limit, which led to an 18 % improvement in the traffic parameters [41].
In addition, Maté et al. optimized traffic signal control through a
multi-agent deep Q-learning approach reduced fuel consumption by
11 % and average travel time by 13 % for regional traffic [42]. MARL, a
data-driven approach based on the application of data to traffic control
systems, effectively utilizes the monitored road information data for
different scenarios where the model is more effective. This paper designs
the HSR strategy optimization as a sequential decision problem,
exploring advanced multi-agent reinforcement learning algorithms as a
new approach to HSR strategy control.

This paper proposes a novel approach adapting the optimized dy-
namic HSR control strategy to address the issues of dimensional explo-
sion and inefficiency that existing methods pose. Starting with the
mathematical model of the HSR strategy control problem, this study
considers multiple traffic flow scenarios and implements the multi-agent
reinforcement learning method to optimize the HSR strategy. The
effectiveness of the proposed method is evaluated in terms of efficiency,
safety, and environmental impact [43,44].
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3. Problem
3.1. Problem description

HSR control is an active traffic management measure that involves
the timely opening of the hard shoulder when the highway experiences
traffic overload or congestion due to accidents or incidents. Effective
control of the opening time and distance of the hard shoulder is crucial
for its optimal utilization. To address this, this study proposes seg-
menting the entire highway section and dividing it into n sub-section
sets, denoted as L = {l; , b , I3, -, l-1 , In}, where each section is
defined as the minimum control unit. Moreover, the control time is
discretized into segments T = (t1,t2,t3,**,tm—1,tm), with the smallest time
slice, t;, representing the unit of open time. The sequence
Decisiongguence =  (({Lsup1 }>t1 ), ({Lsub2}:t2), -+, ({Lsubm }, tm )) T€presents
the mathematical expression of the HSR strategy (shown in Fig. 1). In
this expression, ({Lsp1},t1 ) indicates the opening of all road sections in
L1, a subset of L, for a duration of t;, followed by the closure of all open
sections at the end of t;, awaiting the next decision. The strategy deci-
sion time, being very short, is excluded from the control time and, thus,
disregarded. The subset {Lq;} is empty if there is no need to open any
section during a particular time slice t;. Therefore, the hard shoulder
control strategy problem can be transformed into optimizing the
Decisiongguence. When the control time is fixed, T is determined, and m
represents the number of open time slices, indicating the number of
decisions to be made. In the case of fixed control time, the section length
is also determined, resulting in static control, wherein the hard shoulder
is open during specified time periods and closed during other times.
Conversely, when the control time is uncertain, T becomes a variable,
and the number of open time slices, m, also becomes a variable, leading
to dynamic control. Since static control is typically applied to charac-
teristic events or specific time intervals, this study focuses on solving the
dynamic HSR control problem with variable time periods.

3.2. Mathematical model of the problem

The subsequent section will discuss the mathematical formulation of
dynamic control strategies. As depicted in Fig. 1, let each road segment,
denotedasL ={l , L, 13, -+, l-1, ln}, correspond to decision vari-
ables D= {dy,dy,ds, - ,dn1,dy}. Here, road segment I
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Fig. 2. Constraint diagram.

corresponds to decision variable d;, which is a binary variable (0 or 1).
When d;= 0, it means that section [; is in the closed state during time
slice t;. Conversely, when d;= 1, it indicates that section [; is open during
time slice t;. Let {Lg; } represent the set of all roadway decision variables
d; with a value of 1. Within time slice t;, the open state of the section can
be represented by the tuple ({Lgpi},t; ). Consequently, for the time series
(t1,t2,t3, -, tm_1,tm), the set of open road sections (({Lsp1 },t1 ), ({Lsub2},
tz),, ({Lsupm}, tm )) is determined, which represents the open status of
road sections throughout the control time period. The current roadway
open strategy is defined as the combination D, = [d},d},d§, -, d" |,
d‘] comprising all roadway decision variables within time slice t;, which
is a column vector. The variable corresponding to the strategy consid-
ering the entire section length L and control time T is denoted as Xraregy
[Dy, Dy, ,...,Dy, ,,Ds,], forming an n x m matrix of binary variables (0
or 1). During time slice t;, the hard shoulder is opened using the com-
bination of D, and the highway operates in state S;. At time slice t;,1, the
highway’s operational state transitions to S;,1. The operational state of
the road segment during time slice t;;; is solely influenced by the pre-
ceding time slice t;, giving the problem has Markovian property.

We assume that various indicators of highway efficiency, safety, and
environmental impact are characterized by a function Y. The application

of a specific hard shoulder control strategy, denoted as X, affects

each indicator of the highway, with the corresponding function values
being denoted as Y'. Thus, there exists a relationship between function Y
and strategy Xyqeqy- However, it is not feasible to explicitly resolve the
expression between Y and Xyqeq using function analysis. Instead, the
corresponding value of Y can be determined by simulating the high-
way’s operational state for different X;;qq configurations. To find the
optimal value of Y corresponding to Xyraceqy, Various optimization algo-
rithms such as genetic algorithms, particle swarm algorithms, rein-
forcement learning algorithms, and others can be employed. In cases
where the control time T is uncertain, and the value of m in the strategy
variable matrix Xgroeqy = [Dg, Dy, ---»Dsy » Dy,) is not fixed, tradi-
tional heuristic algorithm optimization methods are not applicable. By
modeling the problem as a sequential decision process and leveraging a
reinforcement learning algorithm, the problem can be solved even with
a variable value of m. The specific modeling approach is elaborated in
the subsequent sections. Given that the aforementioned problem rep-
resents a sequential decision problem with Markovian properties, it is
feasible to employ a reinforcement learning algorithm for its resolution
[45].

3.3. Problem constraints

In consideration of practical requirements, the control strategy
should account for both time and space constraints to be effective. Time
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constraints involve the count of jump changes, which is the sum of
changes in all roadway decision variables d; between two consecutive
time slices [t; ~ ti11]. A jump change occurs when the control variable d;
transitions from 0 to 1 or from 1 to 0 within the time window. Eq. (1)
illustrates this relationship, where d;(t;) represents the switching state of
the i-th section at time slice t;, and d;(tj,1) represents the switching state
at time slice tj;. The parameter ®;n,, denotes the total number of jump
changes, reflecting the overall transformation of the decision variable D
within two adjacent time slices [t; ~ t;11]. Frequent opening and closing
of the hard shoulder can increase lane change occurrences, consequently
elevating driving risks. To ensure highway safety, it is essential to
establish reasonable time constraints and maintain the number of jump
changes within an acceptable range. Therefore, careful consideration is
given to time constraints, balancing the need for efficient traffic flow
while prioritizing driving safety.

Incorporating the principles of connected components from mathe-
matical graph theory, the dispersion level of the open state of the hard
shoulder is characterized by the count of lane components. Each time
slice t;, counts the spatially adjacent and simultaneously open hard
shoulder subsegments as a single lane component. As illustrated in
Fig. 2, the entire lane is represented by L, while [; represents the sub-
sections under control. d; = 0 means the subsegment is closed. d; =1
means the subsegment is open. The Wi, quaniry = 1 indicates the exis-
tence of a continuous open subsegment forming a lane component. At a
given time slice t;, the sum of all components within the entire lane
corresponds to the total count of lane components, denoted as
Wigne quaniity- In the provided case of Fig. 2, the total number of lane
components Wigne quaniity is 4. Eq. (2) represents the constraint on the
number of lane components.

S GlGa)—di(6) < i €]

Z ‘plane_quantity < \Pl)‘(ane,quantity (2)

4. Methodology
4.1. Multi-agent reinforcement learning

Reinforcement learning is a method of autonomous learning through
the interaction of an agent with its environment, developed from a
combination of statistics, psychology, and other disciplines [46]. The
agent perceives the external state of environment and selects actions
accordingly. It then evaluates the rewards associated with the impact of
those actions and adjusts its strategy for subsequent action selection
based on the reward outcomes. In this manner, the agent strives to
perform optimally across various environmental states, aiming to
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Fig. 3. Framework of MADDPG algorithm.

achieve the most favorable outcomes.

Deep learning has emerged as a prominent avenue for advancing
machine learning techniques, offering remarkable capabilities in char-
acterizing high-dimensional data structures across various domains such
as images, videos, and texts [47]. One challenging task for an agent is to
perceive the real-world environment and derive meaningful represen-
tations from high-dimensional inputs. It is necessary to conduct so-
phisticated approaches to solve this complex problem. Utilizing deep
neural networks in conjunction with reinforcement learning methods
can improve the effectiveness of the latter. This approach is referred to
deep reinforcement learning, and it takes issues like data representation
in reinforcement learning. Deep reinforcement learning has demon-
strated significant progress of diverse domains [48-50], particularly in
fields like robotics and gaming. Volodymyr et al. proposed a fusion of
deep neural networks with Q-learning methods in reinforcement
learning, leading to significant breakthroughs by replacing human
agents with deep Q-networks. Extensive testing was conducted on 49
games of Atari 2600, achieving performance comparable to professional
human players and elevating deep reinforcement learning as a major
research focus [51]. In complex systems involving multiple control en-
tities, the problem often needs to be modeled as a multi-agent system
[52-56]. In such systems, multiple agents control objects and make
behavioral decisions while interacting within a shared environment.
Each agent learns from its environment, constructs its behavioral
framework, and pursues specific objectives. Examples of multi-agent
systems encompass multiplayer games, multi-drone formations,
multi-robot collaboration, and collaborative driving of multiple vehicles
[57-59]. The application of deep reinforcement learning methods to
multi-agent systems, tackling diverse problems, is known as multi-agent
reinforcement learning.

Problems addressed by multi-agent reinforcement learning algo-
rithms frequently exhibit Markovian properties, characterized by a tuple
representation (S,A{lN} p &' R{(1-"N} N 7). Here, N denotes the number
of agents, S denotes the observed data of all agents S = (01,02, --,0n),
AllNtdenotes the joint action of all agents ATLN = (A x A2 x ... x
AN), P represents the state transfer probability, indicating the proba-
bility distribution of transitioning from the current state S to the next
state S’ upon taking joint action A. R1'"¥}  represents the reward set for
all agents, and the objective of the multi-agent reinforcement learning
algorithm is to maximize the cumulative rewards of all agents. This

be Jupr = maxE [ZEV Ri]

objective  can expressed  as

maxE[ NS rfrl@] , where 7¢[0,1) is the discount factor, which

focuses the agent on immediate rewards while attenuating the impact of
future rewards [60].

4.2. MADDPG method

Multi-agent reinforcement learning methods can be classified into
three types: cooperative, competitive, and a mixture of both, depending
on the setting between the agents [61]. The MADDPG algorithm is a
hybrid cooperative-competitive multi-agent reinforcement learning al-
gorithm built upon the Actor-Critic network framework, which is an
extension of the single-agent reinforcement learning algorithm Deep
Deterministic Policy Gradient (DDPG) [62]. To ensure training stability,
a single agent is equipped with a dual Actor-Critic framework, wherein
each agent has two Actor networks and two Critic networks. The first set
represents the current network, while the second set denotes the target
network [63]. The Actor network receives information about the state of
the external environment sensed by the agent and gives the corre-
sponding action distribution. The Critic network scores and evaluates
the executed actions based on the current state information. The Actor
network updates the network parameters based on the Critic network
scoring evaluation, and continuously updates the iterative policy to find
the optimal policy. The important feature of the MADDPG algorithm is
that it introduces global observation data and combinations of actions of
all other agents as training data when training a single agents Critic
network, but receives only local information as input when executing
the actions. The framework of the MADDPG algorithm is shown below in
Fig. 3:

Specifically, the environment is set to contain N agents and the set of
strategies characterized by the Actor network is ¢ = {61,02,03--0n-1,
on}, the set of policy parameters is: f = {f;,5,, 83 Bn_1.Pn} , then the
i-th agent expects the gradient of the reward J(o;) = E[R;]:

Vi (05,) = Esa-n[V5,0i(ails:) Vo, Q (5, a1, az--ay) (3

=0y (Xx)]
where s denotes the observed data for all agents, s = (01,02,:-0n-1,0n), @
denotes all intelligent body action sequences, a = (a1,daz,---ay-1,ay). D
denotes the empirical playback pool, which records all the agent sample
data for training the neural network, which consists of the tuples(s;,a}, -
a,rk e N 1), Q7 (s,a1a2-+-ay) denotes the i-th agent action state Q-
value function, the input is the action of all agent (a;az---ay) and the
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agent observation data s. The output is the action state Q-value, which is
the evaluation of the goodness of taking action a in the current state s.
The network parameter update formula for the state value function Q{ is
as follows

LOSS(f;) = Es,arises [(QF (55 ar) —}')2] (€3]

y=r+ TQ:T (sl+1a at+1)‘a’;+1:ﬁ}(oj) 5)
where f = {f],f,, -, Py} denotes the parameters of the target Actor
network strategy ¢’ = {0/, 6}, 0%, -+, 0y_;, 0y }. The target Actor network
update method uses a soft update method according to the following
equation:

Bi=9%pi+(1-9)xp, (6)

4.3. STC-MADDPG algorithm

The algorithm interacts with the simulation module and real-time
data transmission channel to facilitate the training and testing process.
Chapter 5 will provide a detailed description of this process. Specifically,
the algorithm retrieves real-time data from the simulation module
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through a feedback mechanism, generates control strategies, and exe-
cutes them in the simulation environment while updating network pa-
rameters to optimize these strategies. This process concludes when the
predefined reward function converges or a specified termination con-
dition is met. At a certain time step during the algorithm’s training, it
acquires real-time input data from the simulation environment,
including environmental and agent states. Each agent processes the
input data, generating corresponding actions (open strategy) based on
its action network and scoring the generated actions through its evalu-
ation network. By combining the actions of all agents, a joint action
(joint open strategy) is formed and evaluated through a spatiotemporal
constraint module. Joint strategies that meet the spatiotemporal con-
straints are fed back to the simulation platform as open strategies, which
are then executed to collect reward data and state information for the
next time step, thereby constructing a training data pool. Based on this
data pool, the algorithm uses the target network to randomly sample
data, updating both the action network and the evaluation network.
After a certain number of training steps, the parameters of the target
network are adjusted through a soft update process. This iterative pro-
cess continues until the algorithm’s training is completed.

Combining the spatio-temporal constraints and the above learning
process, the STC-MADDPG algorithm is structured as follows:
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Algorithm 1. STC-MADDPG algorithm for shoulder running with N

agents

o

10.
11

12.

13.

14.

15.

16.

17.
18.
19.
20.

21.

Initialize the parameters of the critic network Q(s,a; %), the target critic network
Q'(S, a;ﬁQ’), actor network o(s; 8%) and target actor network a’(s;ﬁ",)
For episode from 1 to N do

Reset the simulation environment

For t = 1 to Ny do

For each agent; , observe the environment state 0gppironment and the state of
agent; : 0;, obtain the state of agent; : s;(t) = [Oenvironment> 0il], then the
current state s(t) = [s1(t), $2(t), ..., Sy (£)]

For each agent i, select the action a; = a;(s;(t); B°) + N, the joint action

a=ay,ay ... a]

Check the joint action a meets the constraint conditions, if not satisfying,

repeatedly select the joint action until it is met

Perform a simulation and compute the reward r(t) for each agent, observe the
next state s(t +1) = [sy(t + 1),s,(t + 1), ..., sy(t + 1)]

Store the transition (s(t),a,r(t),s(t +1) ) to dataset D
Foragent i=1 to N do
Randomly sample a minibatch of S samples (s*(t),a®,r*(t),s*(t +
1) ) from the data set D
Qitarget(k) ) = ri(k) ) + yQitarget(k) (S(k) (t+1), as(k)(Hl);ﬁQr)
as(k)(t+1) — [alll azl’ ,an’],where aj’ — O}I(Sj-k(t + 1);,80")
Update the parameters of the critic network by minimizing loss function:

L0SS(B9) = 1/N; ) (@M () - 0(s%(©),a; ) )?
k

Be= B2~ ngVzel0SS;(BY)
Update the parameters of the actor network by using the sampled policy
gradient:

Vi(B%) ~ 1/stvaioi(s(k><t). G BOVooy(s’(1); %)
k

End for
End for
Soft update the target network parameters for each agent every N training times:
Y =(1-9)p%+ 98
{ﬁ“’ =(1-9)p"+ 0B
End for
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Fig. 6. Sumo simulation framework.

5. Experiment and environment

The following section describes the experimental environment, the
experimental environment elements, and the simulation environment.
Section 5.1 describes the reinforcement learning agent, the observation
space, the action space, and the reward function in the experiment.
Section 5.2 describes the experimental sections, the simulation frame-
work, and the experimental data.

5.1. Experimental environment elements

5.1.1. Agent

This paper proposes a methodology where contiguous road sections
are combined into a sub-section set, denoted as set_l;, and treated as
individual agents Agent;. The actions of the agent are recorded as a
combination of open and closed states of each section in the section set,
and thus control the state of the section. By dividing the whole road
section into N subsets of road sections, the open and closed states of the
whole road section can be controlled by N agents, shown in Fig. 4.

5.1.2. Observe

The observation space S; of the agent is divided into two parts. One
part consists of environmental observation data, Oenyironment

[carsorar, wait_timeyorqr, volumeyyq]. Among them, cars,y indicates
the total number of vehicles in the network, which is used to describe the
current traffic pressure on the road network; wait_time,,, indicates the
total waiting time of vehicles on the road network, which is used to
describe the current traffic efficiency of the road network; volumeq
indicates the total volume on the road network, which is used to describe
the current traffic flow condition of the road network. A part of the in-
dependent observation data from the intelligent body o;

[carsi, wait_time;, average_velocity;, travel_time;, occupancyi] s where
cars; denotes the number of all vehicles observed on the road section
controlled by the i-th agent, wait_time; denotes the waiting time of all
cars on the road section controlled by the i-th agent, average_velocity;
denotes the average speed of vehicles on the i-th agent-controlled road
section, travel time; denotes the average travel time on the i-th agent-
controlled road section, occupancy; denotes the average occupancy
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rate of the i-th agent-controlled road section. The observation data of the
i-th agent is S; = [Oenvironmenr ,  0i], that is, the state information indi-
cating the current state of the road network is S = [S1,S2,S3, -+, Sn]-

5.1.3. Action

Each agent governs the switching state of a contiguous set of multiple
road segments, denoted as set_l;. Each road segment, denoted as [, is
regulated by binary decision variables (d;) to determine control activa-
tion. The agent’s action space encompasses all possible permutations
and combinations of binary control variables within the set of road
segments, shown in Fig. 5.

5.1.4. Reward

The objective of this study is to minimize individual vehicle travel
time within the network and enhance the efficiency of highway network
operations, consequently analyze other impacting factors. In pursuit of
these objectives, we consider the combination of both vehicle travel
time and traffic flow on the network. The following equation represents
the formulated reward function:

1
" logyy(cars; /volume;)’

n
re= Z‘ﬂi’lz
i1

where cars; denotes the total number of vehicles on the network of the
i-th agent control section, volume; denotes the traffic volume of the i-th

)

n

)

agent control section, 7 denotes the reward of the i-th agent at the t-th
time slice, and r; denotes the reward of all agents at the t-th time slice.

5.2. Simulation environment

5.2.1. Road Segment introduction

This paper utilizes the urban microsimulation environment, SUMO,
to conduct simulations and validate the feasibility and effectiveness of
the proposed method. The road section has a total length, denoted as L,
of 6.5 km, with each sub-section, represented by [, approximately
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Fig. 7. Training results.

ranging from 300 to 400 m. Consequently, the road section can be
divided into 16 sub-sections. This is a section of highway in Jinan,
Shandong Province, China, between Ganggou Interchange and Lix-
ingcheng Interchange, which was used as a section for simulation ex-
periments. To achieve optimal results, the time constraint threshold is
experimentally adjusted, and @}, is taken as 8. In addition, this paper
constrains the number of lane components Wj,. gyqnsiry it the experiment
to the interval [0,7]. It is important to note that the maximum number of
lane components can not exceed 7, while the minimum can be 0. Spatial
constraints control the degree of dispersion of open hard shoulder sub-
segments within the same time slice.

Fig. 6 illustrates the structure used for conducting simulation ex-
periments. The SUMO simulation environment receives joint actions
from the individual agent combinations of the STC-MADDPG algorithm,
controlling the opening and closing of the hard shoulder through the
Traci interface in the Python environment. In real-time, the environment
generates traffic flow data, including status and reward data, which is
stored in a data buffer pool. At the conclusion of the simulation, each

107

agent updates network parameters by sampling the stored data. After
several iterations of this process, the STC-MADDPG algorithm rewards
convergence, indicating the end of the experimental training.

5.2.2. Data introduction

According to the rules for evaluating the service level of Chinese
highways, traffic flow conditions on the highway divided into four levels
to represent service quality [64], then the corresponding flow data
under different service level will be employed as simulation inputs. The
total traffic volumes for the four service levels are calculated based on
the maximum service traffic volume under different lane speed limits.
These volumes are determined to be 1400 (veh/h), 3000 (veh/h), 3750
(veh/h), and 4300 (veh/h) for the respective service levels. To create a
more realistic representation of the vehicle composition in the highway
traffic flow, the SUMO simulation data includes three types of vehicles:
Trailers, Trucks, and Private cars. Trailers, representing large-sized ve-
hicles, including big trucks and other vehicles, have a length exceeding
10 m. Trucks, representing medium-sized vehicles, have a length of
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Fig. 8. Efficiency analysis under different service levels.

about 7-10 m. Private cars, representing small vehicles, have a length of
approximately 5-6 m. The proportions of these vehicle types are set to
15 %, 15 %, and 70 % respectively, based on the data distribution of
different vehicle types observed in the highway in Jinan City, Shandong
Province.

6. Analysis of results and discussion

In this section, we assess the efficacy of the proposed STC-MADDPG
algorithm through simulation experiments and evaluate its ability to
address the HSR control problem on highways. With the widespread
adoption of highway traffic flow sensing technology, vehicles can
readily acquire real-time traffic flow information on highway sections,
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thereby facilitating the dynamic opening of the hard shoulder. In this
study, we employ SUMO simulation to replicate functions such as
roadway information collection, information communication, and in-
formation exchange among vehicles. Each Agent; governs a sub-section
set, set_l;, and determines whether to activate the hard shoulder in this
particular sub-section set. To explore the impact of the number of sub-
sections on the control effectiveness of different agents, we consider two
scenarios: 2 and 4 controlled subsections per agent. If an agent controls 2
subsections, the total number of agents is 8; if an agent controls 4 sub-
sections, the total number of agents is 4. Training tests are conducted
separately for each agent count.

Given the varying traffic flow conditions on highways, the re-
quirements and approaches for hard shoulder activation can differ
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significantly. This paper categorizes the highway traffic flow status
based on service levels, assigns different flow magnitudes to different
traffic flow scenarios, and employs the STC-MADDPG algorithm to
investigate the optimization problem of dynamic hard shoulder running.
This section comprises three parts: training results, evaluation of indi-
vidual indices, and an extended study.

6.1. Training results

Highway service level characterizes the quality of traffic service
provided to drivers on the highway. Highway service levels are cate-
gorized as Class I, Class II, Class III, and Class IV. Different levels
correspond to highway traffic conditions evaluated by traffic speed and
traffic volume. The optimal solution is computed for four classes, each
further divided into two cases involving four and eight agents. The
reward convergence plots of the training process using the STC-
MADDPG algorithm are depicted in Fig. 7, where a, b, ¢, and d corre-
spond to the first, second, third, and fourth service levels, respectively.
In this study, the control algorithms deep Q learning (DQN) [65] and soft
actor-critic (SAC) [66] are employed alongside the STC-MADDPG al-
gorithm to validate its effectiveness. As observed in the figure, the blue
curve representing the STC-MADDPG algorithm consistently achieves
the highest reward across all four service levels. When comparing the
four service levels, it becomes evident that the algorithm exhibits slower
convergence and greater reward variability as the service level gradually
increases. This observation suggests that in practical control scenarios,
as traffic flow intensifies, the control effectiveness may become less
stable once the highway traffic density reaches a certain threshold.
Notably, at service level 4, the utilization of 8 agents for control yields
slightly higher rewards compared to other control approaches, implying
that a more subtle control strategy may be more effective in high-traffic
scenarios.
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6.2. Evaluation of learning performance

To assess and validate the performance of the approach, this study
employs two fundamental control groups: "zeros," representing the
scenario where none are open, and "all," signifying the case where all are
open. Additionally, the "DQN" and "SAC" schemes serve as the optimized
control groups to verify the effectiveness of the STC-MADDPG algo-
rithm. The proposed method is evaluated and validated based on effi-
ciency, safety, and emissions across four service level conditions. These
three aspects are compared and analyzed using six indicators: total
travel time, cumulative occupancy, TIT (Time Integrated Time-to-
collision) [67], CO, CO2, and NO. To accommodate the large values of
these indicators, logarithms are taken to obtain relative values, as
illustrated in the following figures.

6.2.1. Efficiency

The Fig. 8 presents a comparative analysis of total travel time and
cumulative occupancy for different strategies across four service levels.
It is evident that the STC-MADDPG algorithm control strategy effectively
reduces the total travel time for both vehicle categories compared to the
"no open" strategy across all service levels. The "8-MADDPG algorithm"
achieved reductions in total travel time of 14.5 %, 37.5 %, 33.5 %, and
30.4 % for the four service levels, respectively, when compared to the
"no open" strategy.

At service level 1, the impact of opening or closing the hard shoulder
on improving vehicle driving efficiency is relatively minimal since the
highway experiences smooth traffic flow. However, under service level 2
and 3 conditions, where traffic volume is higher, opening the hard
shoulder increases capacity and enhances vehicle movement. Notably,
the "4-MADDPG" and "8-MADDPG" algorithms yield superior outcomes
compared to the "4-DQN," "8-DQN," "4-SAC," and "8-SAC" algorithms,
resulting in greater reductions in total travel time. From Section 6.1 we
conclude that the "4-MADDPG" and "8-MADDPG" converge to higher
reward values compared to "4-DQN," "8-DQN," "4-SAC," and "8-SAC"
algorithm for the same number of training rounds. This indicates that
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the strategy of STC-MADDPG enables vehicles to leave the control area
in a faster time. This will result in all vehicles spending less time on the
control road network, which in turn will allow the corresponding
strategy of STC-MADDPG to have less total travel time.

The MADDPG algorithm assumes that each agent has its own inde-
pendent critic network and actor network, and assumes that each agent
has its own independent reward function, so that the MADDPG algo-
rithm can solve the multi-agent problem in the collaborative, competi-
tive, and hybrid environments at the same time. Fusing the time and
space constraints, the STC-MADDPG algorithm is proposed, which
learns the optimal policy to give the optimal action using only local
information. In contrast, DQN, SAC algorithms all need to obtain com-
plete global information data in order to generate the corresponding
control policies. In addition, when the control section becomes larger,
the action space dimension of DQN and SAC algorithms will increase
exponentially, and then DQN and SAC algorithms cannot be used. The
STC-MADDPG algorithm segments multiple control sections, which can
not only control the local area effectively, but also cooperate and win-
win situation among multiple agents, which makes the overall effect
better.

In the case of the fourth service level, where the traffic flow-to-
capacity ratio reaches 0.88-1.0, congested sections become more prev-
alent. The "4-MADDPG algorithm" and "8-MADDPG algorithm" control
strategies achieve reductions in total travel time by 26.8 % and 30.4 %,
respectively. Cumulative occupancy rate calculates the sum of highway
occupancy rates over a specified time period, providing insights into the
overall operational balance. The cumulative occupancy index further
demonstrates that the STC-MADDPG algorithm strategy improves
highway traffic conditions compared to the "no open" and "all open"
strategies.

The aforementioned comparison highlights the effectiveness of
optimized HSR control in enhancing highway traffic efficiency. How-
ever, the control effects of different agent control methods vary signif-
icantly across the four service levels, with the 8-agent method exhibiting
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Table 1
Traffic flow expansion under service level 4.
Service Ratio  Trailers Trucks Private cars Total flow
level (veh/h) (veh/h) (veh/h) (veh/h)
4 0.8 516 516 2408 3440
4 1.0 645 645 3010 4300
4 1.2 774 774 3612 5160
Travel time of all vehicles
a. 1e9
1.96 -—E\ o
AN N ratio :0.8
2 1.94 N TN
~ g \
= 1.92 A N
N
N
1.90 1 . §
b ZEROS ALL 4-MADDPG 8-MADDPG
. le9
* S —
24259 % Rt ratio :1.0
7y N / ~e
— 2.400 - \ 4 S
[} S / ~
= AN ’ NS
.= 4 ’
= 2375 \ Y
\ ’
2.350 4 N7
v
ZEROS ALL 4-MADDPG 8-MADDPG
C. le9
v
2.9251 ratio :1.2
" 2.900
2 2.875 -
§= v
& 2.850
2.825 1 : : y
ZEROS ALL 4-MADDPG 8-MADDPG

Fig. 12. Total travel time under different traffic flow expansion ratios.

superior performance.

6.2.2. Safety

The Time Integrated Time-to-Collision (TIT) index is an indicator
that encompasses the impact of risky driving behavior and is calculated
by integrating the duration a vehicle spends below the TTC threshold. In
this study, the evaluation of the impact of the STC-MADDPG algorithm
for highway HSR control on highway safety is approached from the
perspective of the TIT index. The Fig. 9 illustrates the comparison results
of the four-agent and eight-agent algorithms.

At service level 1, there is minimal variation between the different
control strategies. This can be attributed to the smooth movement of
vehicles on the highway, resulting in a higher probability of vehicles
maintaining a safe distance from each other and consequently higher
road safety levels. At the service level 2, both variations of the STC-
MADDPG algorithm outperform the "no open," "4-DQN," "8-DQN," "4-
SAC," and "8-SAC" algorithms in searching for superior policies. The
control strategy output by STC-MADDPG allows vehicles to stay shorter
and spend less time in a hazardous state when passing through the
control area. As a result, the vehicle TIT value is lower compared to the
DQN, SAC algorithm output control strategy. And the effect of the
trained model will be different under different service levels.

At the service level 3, adopting the STC-MADDPG algorithm’s open
strategy led to reductions in TIT values of 18.7 % and 31.4 % for the
four-agent and eight-agent scenarios, respectively, compared to the "no
open" strategy. This improvement was highest across the four service
levels. Notably, as the service level progresses from one to four, the
optimization effect on TIT values initially increases and then decreases,
with reductions of 4.1 % and 5.8 % transforming to 18.7 % and 31.4 %,
and finally keeping at 15.4 % and 17.3 %, respectively. This observation
suggests that enhancing highway safety can be more challenging under
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Fig. 14. Exhaust emission index display.

both lower and higher traffic conditions.

6.2.3. Emissions

Vehicle exhaust a significant contributor to atmospheric pollutants,
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encompassing various gases such as carbon dioxide, carbon monoxide,
nitrous oxide, and nitrogen dioxide. Carbon dioxide, in particular, acts
as a greenhouse gas, leading to global warming and influencing regional
climate change. Nitric oxide rapidly oxidizes in the atmosphere to form
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nitrogen dioxide, a prominent pollutant that impacts air quality. The
Fig. 10 illustrates the successful reduction of highway vehicle emissions
through the implementation of the STC-MADDPG algorithm for HSR
control.

At the service level 1, consistent with the results for the efficiency
and security metrics, the results do not vary significantly across strate-
gies. The STC-MADDPG algorithm optimized for HSR control demon-
strates significant reductions in CO, emissions of 12.4 % and 16.4 %,
respectively, compared to the no-open strategy at service level 2.
Remarkably, this optimization yields the most substantial benefits
among the four service levels. Likewise, for CO and NOy emissions, re-
ductions occur across all four service levels. Notably, at service level 4,
the optimized control strategy employing either the 4-agent or 8-agent
mode results in reductions of carbon monoxide, carbon dioxide, and
nitrous oxide emissions by 21.7 %, 14.3 %, and 19.9 %, respectively.
The reduction in vehicle exhaust emissions is consistent across both
modes, highlighting the efficacy and feasibility of utilizing the STC-
MADDPG algorithm for optimized HSR control from an emissions
standpoint.

6.3. Further discussion

At the service level 4, we observed that training with 8 agents
resulted in faster convergence and higher rewards compared to training
with 4 agents. As the total length of the controlled sections remains
constant for both the 4- and 8-agent approaches, controlling more sub-
sections per agent is required in the 4-agent approach. Thus, as the
number of controls per agent is smaller in the 8-agent approach, it is
more effective for higher traffic volume. To validate these findings, this
study expanded the length of the control section and conducted
comparative experiments by increasing the maximum traffic values by
0.8, 1.0, and 1.2 times for the service level 4. The selected section is
illustrated in Jinan city, a length of 16.3 km (shown in Fig. 11), and the
traffic flow is presented in Table 1. Three different ratios: 0.8, 1.0, and
1.2 times the total flow at service level 4 (4300 veh/h) were employed as
traffic flow data for the simulation.

Under the aforementioned three flow conditions, a comparative
analysis was conducted among four strategies: "no open," "full open," "4-
MADDPG Algorithm", and "8-MADDPG Algorithm." The obtained results
provide comparative insights into the effectiveness of these strategies in
terms of efficiency, safety, and emissions. As illustrated in Fig. 12, the
results show the comparison of total travel time for the three traffic flow
expansion rates. Notably, the "8-MADDPG algorithm" outperforms the
"no open" strategy and other approaches. The total travel time reduction
achieved by the "8-MADDPG algorithm" compared to the "no open"
strategy is 17,795.68 hours, 15,397.3 hours, and 28,806.15 hours
across three cases.

The algorithmic search strategy effectively enhances highway effi-
ciency by reducing vehicle travel time. Moreover, when comparing the
"8-MADDPG algorithm" with 8 agents to the "4-MADDPG algorithm"
with 4 agents, the former demonstrates superior control effectiveness,
resulting in a reduction in total travel time of 14,076.32 hours,
12,415.51 hours, and 16,430.69 hours for the three traffic conditions,
respectively. These findings indicate that increasing control granularity
by adjusting the number of agents under high traffic conditions can
enhance efficiency of traffic flow on highway.

The Fig. 13 illustrates the comparison of TIT values for three
different traffic ratios. From a safety perspective , the impact of
different strategies was evaluated. The "8-MADDPG algorithm" demon-
strates significant reductions in the TIT value compared to the "no open"
strategy shown in the figure, with reductions of 23.3 %, 16.3 %, and
27.8 % observed under the three traffic conditions, respectively. TIT
represents the cumulative time that vehicles spend in critical situations
where collision risk is high while traveling on the highway. A decrease in
the TIT value indicates reduced time spent in critical conditions, thus
contributing to improved highway safety. Notably, at expansion rate of
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1.2, the "8-MADDPG algorithm" achieved a reduction of 108.5 hours
compared to the "4-MADDPG algorithm." This reduction signifies a
substantial enhancement in driving safety, as it represents a decrease in
the time during which vehicles are exposed to potential collision risks.
The "8-MADDPG algorithm" consistently outperformed the "4-MADDPG
algorithm" across all three traffic conditions, demonstrating its superior
effectiveness in enhancing highway safety. These findings emphasize the
importance of meticulous control measures, particularly in scenarios
characterized by high traffic volumes.

The Fig. 14 presents the comparison of CO, CO5, and NO emissions
for all vehicles across three traffic flow expansion ratios. The analysis of
CO emissions in the Fig. 14 (a, b, ¢) reveals the superior effectiveness of
the "8-MADDPG algorithm" strategy, resulting in significantly lower CO
emissions compared to the other three strategies. It is worth noting that
CO,, as a primary greenhouse gas, plays a important role in climate
change, and the reduction of CO3 emissions can contribute to mitigating
the greenhouse effect and alleviating the adverse impacts of environ-
mental degradation. Examining the Fig. 14 (d, e, f), which focuses on
CO; emissions, the "8-MADDPG algorithm" strategy demonstrates its
effect in curbing CO, emissions when compared to the baseline "no
open" strategy. Specifically, it achieves reductions of 12,351.8 kg,
834,678 kg, and 226,667.5 kg under the respective flow conditions.
Furthermore, the "8-MADDPG algorithm" strategy proves effective in
minimizing NO emissions, with a substantial reduction of 4097.0 kg at a
flow rate of 1.0 in comparison to the "no open" strategy. These re-
ductions provide considerable significance. When assessing the cumu-
lative emissions of the three gases, the "8-MADDPG" strategy yields
substantial reductions of 134,729.5 kg, 837,776.2 kg, and 40,344.2 kg
when compared to the "4-MADDPG" strategy across all three flow rates.
These findings underscore the superior efficacy of the "8-MADDPG al-
gorithm" in mitigating highway vehicle emissions and addressing envi-
ronmental pollution.

7. Conclusion

Highway congestion causes queuing delays, higher pollution emis-
sions, and significant disruption to highway operations. This paper ex-
amines how to improve traffic efficiency and reduce pollution emissions
by optimizing the control strategy of the hard shoulder based on the
multi-agent reinforcement learning algorithm. Firstly, we propose the
multi-agent reinforcement learning algorithm STC-MADDPG based on
hard shoulder spatio-temporal constraints. Secondly, using the SUMO
simulation environment, we verify the effectiveness of the proposed
method on a 6.4 km long section. Experimental results demonstrate the
capacity of the proposed method to improve the efficiency of highway
traffic, reduce the danger of traffic, and simultaneously reduce vehicle
exhaust emissions. Under the four service level conditions, the proposed
method reduced total vehicle travel time by up to 37.5 %, TIT values by
up to 34.1 %, and emissions of carbon monoxide, carbon dioxide, and
nitric oxide by up to 28.0 %, 17.1 %, and 27.2 %, respectively. The
comparison of the three aspects of efficiency, safety, and environmental
pollution shows that the effective control of the hard shoulder control
problem by the STC-MADDPG algorithm can improve highway traffic
conditions and provide manifold benefits. Finally, an analysis of the
results of the extended study with 4 and 8 agents at longer control
sections at service level 4 suggests that a smaller number of control
sections per agent is more effective during times of heavy congestion.

The current research on hard shoulder operation strategies in this
paper has limitations in its impact on highway traffic flow. Combining
various active traffic control methods, such as variable speed limits,
ramp metering, and queue warnings, may lead to better results. Sec-
ondly, the traffic environment data used in this research does not take
into account special factors such as weather and holidays, which will be
considered in future studies. To address these limitations, future in-
depth studies could investigate the combination of other active traffic
control techniques with hard shoulder running to further improve traffic
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flow simulation environments and explore alternative indicators for
highway evaluation.
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