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Changsha, China

ABSTRACT

With increasing travel demand, highway congestion and accidents have become more fre-
quent. As an essential component of intelligent transportation systems (ITS), Hard Shoulder
Running (HSR) provides a dynamic strategy to mitigate congestion by temporarily opening
shoulder lanes, yet traditional methods often fail to adapt to real-time traffic changes and
overlook the shoulder’s critical role in ensuring emergency vehicle access. This study pro-
poses a novel HSR optimization framework based on the Long Short-Term Memory (LSTM)
and Multi-Agent Deep Deterministic Policy Gradient (MADDPG) reinforcement learning algo-
rithm, integrated with an improved A* algorithm for EV lane clearing. LSTM is used to
extract temporal features from traffic data to support intelligent decision-making in
MADDPG, enhanced with prioritized experience replay and importance sampling. The EV
lane-clearing task is formulated using graph theory, and the improved A* algorithm deter-
mines the optimal path for clearing. A simulation case was developed using Simulation of
Urban MObility (SUMO) for a section of the Jinan City Ring Highway, China, evaluating four
levels of traffic service. Results show the proposed method reduces total travel time by
14.6%, Time Integrated Time-to-Collision (TIT) by 45.2%, and CO2 emissions by 11.9%.
Additionally, with EV intervention, braking times are reduced by up to 376.3% and travel
time by 18.1% using the improved A* strategy. These findings demonstrate that the inte-
grated LSTM-MADDPG and A* approach effectively enhances highway traffic efficiency,
safety, and sustainability under complex real-world conditions.
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1. Introduction

With the rapid development of the economy, the
increasing number of vehicles on highways has led to
significant issues, including congestion, accidents, and
elevated local air pollution. ITS have emerged as an
effective solution, leveraging dynamic management
technologies to implement HSR—the temporary use
of the hard shoulder to improve road capacity and
alleviate congestion. As a core service of ITS, HSR
dynamically adjusts the operational status of the
shoulder lane through real-time traffic monitoring,
variable message signs (VMS), and algorithmic opti-
mization methods. Since the 1980s, several European
countries, including the United Kingdom, France, and
Germany, have been utilizing HSR as a management
measure to address highway congestion issues
(Guerrieri & Mauro, 2016). The hard shoulder refers
to the part of the shoulder adjacent to the main lane,
designated for the stopping of vehicles or the passage

of special vehicles during emergencies. Considering
the special function of the hard shoulder, it is
required to provide high-speed access for ambulances,
police vehicles, engineering rescue vehicles and other
vehicles under emergency conditions. Therefore, the
application of HSR needs to take into account special
traffic scenarios such as emergency vehicles driving
into the regulated area.

Presently, extensive research has been conducted
on the impact of HSR strategies on highways and the
optimization of these strategies, forming a foundation
for subsequent researches. The opening of the hard
shoulder significantly affects various aspects of the
highway, which can be summarized into three primary
categories: efficiency, safety, and vehicle emissions.
The implementation of HSR strategies increases the
capacity for both local areas and the entire road
section, thereby reducing highway congestion and
enhancing operational efficiency. The dissipation of
congestion also has a significant effect on highway
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safety. Reducing the frequency of occasional accidents,
the number of vehicle stops, and vehicle emissions are
all benefits of implementing HSR strategies. These
conclusions have been sequentially corroborated.
Nevertheless, most existing studies predominantly
analyze and optimize HSR strategy impacts on high-
ways with a focus on a single objective, such as effi-
ciency or safety. Simultaneously considering the
optimization of efficiency, safety, and vehicle emis-
sions represents a challenging yet highly valuable
endeavor. Furthermore, a limited number of scholars
have explored HSR strategy optimization methods.
The optimal HSR strategy is determined by applying
the enumeration method and simulation to analyze
the implementation effect of different discretized HSR
strategies. In addition, Li et al. (2019) employed the
genetic algorithm to optimize the HSR strategies,
using total travel time as the objective function, aimed
at enhancing highway operational efficiency. Methods
for optimizing HSR strategies in various scenarios
continue to rely on conventional approaches, such as
enumeration algorithms and genetic algorithms.
Nowadays, real-time changes in freeway traffic flows
were more rapid, and the traffic environment has
become increasingly complex. Optimizing HSR strat-
egies requires a more detailed consideration of the
heterogeneity among various sections of the highway.
Furthermore, current research primarily concen-
trates on the impact and optimization of HSR strat-
egies, often overlooking the original function of hard
shoulders. The most fundamental function of hard
shoulders is to serve as a passage for special vehicles
during emergencies. EVs are crucial components of
emergency systems, requiring prompt and secure
responses to various urgent incidents, including
ambulances, fire trucks, and rescue vehicles. As the
primary means of transportation for emergency
response, ensuring their unimpeded passage and
reducing response times contributes to an increase in
rescue speed. Relevant studies indicate that the
“golden hour” for rescuing trauma patients is within
the first hour after an accident. The success rate of
rescue is closely tied to response speed; the faster
emergency vehicles arrive at the accident scene, the
higher the likelihood of successful patient rescue.
When emergency vehicles reach the accident site
within 7 min, the success rate of rescue can reach
94.8% (Newgard et al, 2010). If the arrival time is
doubled, the rescue success rate drops to 75.3%.
However, the implementation of HSR strategies often
results in private vehicles occupying the hard shoul-
der. When EVs enter the regulated area, they may

encounter disruptions from these vehicles, leading to
delays and serious damages.

To overcome the limitations of previous studies
and address the optimization challenges of HSR strat-
egies—particularly in scenarios where EVs enter the
regulated area—this paper introduces a novel L-
MADDPG-A* algorithm. The proposed approach is
structured within a two-layer problem framework.
The primary layer involves optimizing the HSR strat-
egy, while the secondary layer focuses on the EV
vehicle lane clearing issue. For the HSR strategy opti-
mization, we present an innovative algorithm that
integrates LSTM with MADDPG, effectively leveraging
the time-series data extraction capabilities of the
LSTM model. Additionally, the reward function
within the MADDPG framework is designed to con-
sider three critical performance metrics: safety, effi-
ciency, and emissions. These objectives guide the
training process, enabling the agent to learn an opti-
mal control strategy for HSR deployment under
dynamic traffic conditions. For the secondary problem
of EV lane clearing, we transform the vehicle merging
challenge into a graph-based path planning problem.
We introduced an A* algorithm that employs heuris-
tic algorithms to determine the optimal clearing solu-
tion. Hence, the primary contributions of this paper
are as follows: (1) Introduction of a two-tiered model
framework for optimizing HSR strategies while con-
sidering EVs entering the regulated area. (2)
Development of an LSTM-MADDPG algorithm to
optimize HSR strategies, considering the temporal fea-
ture of traffic data and regional traffic flow heterogen-
eity. (3) Formulation of the lane clearing problem
when EVs enter the regulated area from a graph the-
ory perspective, with the proposal of an improved A*
algorithm for lane clearing. (4) Taking into account
the heterogeneity of highway traffic flows, construct
practical simulation cases for problem-solving and
algorithm evaluation across four different highway
service level traffic flow scenarios.

The article is structured as follows; The problem
formulation and model design are described in
Section 2, the methodology is explained in Section 3,
the experimental elements and design are described in
Section 4, the analysis and discussion of findings are
analyzed in Section 5, and the conclusion is summar-
ized in Section 6.

2. Literature review

The following three sections provide a review of exist-
ing research outcomes in three main themes: HSR



strategies, EV lane clearing methods, and reinforce-
ment learning algorithms. The HSR strategy research
section analyzes the current impact of HSR strategies
on highways and the research outcomes of optimiza-
tion methods. The EV lane clearing methods section
reviews the various lane clearing approaches proposed
by different scholars. The reinforcement learning algo-
rithm section introduces the current development sta-
tus of multi-agent reinforcement learning algorithms.

e HSR strategies

To alleviate frequent highway congestion and
reduce accidents, implementing Hard Shoulder
Running (HSR) strategies has proven to be an effect-
ive approach. During periods of heavy traffic, HSR
strategies can significantly increase highway capacity,
reduce congestion, boost vehicle speeds, and minimize
delays (Bhouri et al., 2017; Coffey & Park, 2018;
Ghiasi et al., 2018; Li et al., 2017; Newgard et al,
2010; Vadde et al.,, 2012; Yao et al., 2024). The imple-
mentation of HSR strategies can alleviate congestion
and improve travel efficiency not only during heavy
traffic but also at specific highway bottlenecks, leading
to reduction of travel times (Zhang et al,, 2022; Zhi
et al., 2024). Opening the hard shoulder at the right
moment offers a distinct advantage, but it’s crucial to
note that prolonged open doesn’t always improve traf-
fic conditions (Cohen et al., 2010). The effects of
implementing the HSR strategy are more noticeable
during the time periods with high traffic pressure,
particularly on weekends, leading to improvements in
both travel time and its reliability (Ma et al., 2016).
These findings emphasize to implement different HSR
strategies for different traffic scenarios. Furthermore,
it is worth noting that, apart from alleviating traffic
congestion, the implementation of HSR holds the
potential to enhance highway safety to a certain extent
(Arora & Kattan, 2023; Chun & Fontaine, 2017;
Kononov et al., 2012). The application of HSR strat-
egies on Interstate 2015 (I-66) in northern Virginia
resulted in a notable reduction of rear-end collisions
by 31% (Waleczek & Geistefeldt, 2021). Aron et al.
(2010) study of the implement HSR strategies on a
segment of the French freeway (A4-A86) similarly
demonstrated a decline in accident occurrence con-
comitant with reduced road traffic density resulting
from the opening of the hard shoulder. Utilizing a
Bayesian modeling approach, a comprehensive ana-
lysis clarified the impact of broader composite should-
ers on highway safety. This analysis indicated a
potential decrease of up to 61% in localized accidents
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and a 31% reduction in fatal crashes (Dutta et al,
2019). These collisions often result from inadvertent
causes, and the dynamic opening of the hard shoulder
facilitates the rapid evacuation of congested traffic
flows, thereby reducing the occurrence of such unin-
tentional accidents (Cohen et al, 2010). In certain
cases, by utilizing HSR strategies to alleviate down-
stream traffic congestion, it is possible to improve the
safety conditions upstream. This conclusion stems
from Waleczek et al’s (2021) comprehensive analysis
of 13 years’ worth of accident data from seven seg-
ments of German highways. Improvements in traffic
flow conditions and increased highway safety make
highway travel smoother, resulting in reduced vehicle
occupancy time on the road (Abdel-Aty et al.,, 2024).
During periods of congestion, vehicles frequently
experience stop-and-go patterns, resulting in ineffi-
cient fuel consumption. As travel times decrease, the
cumulative emissions of pollutants from vehicles in
localized areas also decrease, subsequently leading to
reduced atmospheric pollution. Wilson et al. have dis-
cussed the implementation of the hard shoulder strat-
egies to alleviate traffic congestion, concurrently
yielding ancillary benefits, including the decrease of
carbon emissions and the reduction of environmental
pollution (Zeng & Schrock, 2012). Notably, some
studies suggest that implementation of HSR strategies
exhibits the potential to reduce vehicle fuel consump-
tion and emissions by up to 32% without necessitating
road expansion. This result emphasizes the signifi-
cance of implementing the HSR strategy and shows its
economic viability and substantial improvement
effects (Wilson, 2009). In the aforementioned study,
the improvement effects of HSR strategies on the
highway were analyzed from the perspectives of effi-
ciency, safety, and vehicle emissions. Different HSR
strategies yield different effects on the highway traffic
condition. Consequently, numerous researchers have
proposed their own research approaches to address
the issue of formulating specific HSR strategies for
different traffic flows. Yang et al. (2021) utilized K-
Means clustering to categorize traffic conditions, sup-
plemented by factor analysis and TOPSIS method for
determining optimal conditions for opening hard
shoulder. These initial researches only considered the
two fundamental strategies, open and closed, to estab-
lish the threshold for opening hard shoulder.
Subsequently, some researchers have studied more
complex traffic scenarios, utilizing methodologies such
as Q-learning (Zhou et al,, 2020), IBM CPLEX solver,
and others to optimize HSR strategies. However, while
the strategy has become more sophisticated, it often
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focused on the entire roadway without considering
localized traffic flow conditions. This mathematical
formalization of the strategy defines the problem as
an optimization challenge, making it an invaluable
resource for future research endeavors. Li et al. (2019)
defined the strategy as the arrangement of the open
and closed states of different sub-sections of multiple
temporal intervals, and utilizing genetic algorithms to
find the optimal HSR strategy with the objective of
minimizing travel time. This mathematical formaliza-
tion of the strategy and the optimize method for HSR
strategy provide a valuable reference for future
research.

e EV lane clearing methods

The implementation of the HSR strategy yields
numerous benefits for highways, but it also introduces
certain challenges. Vehicles occupying the hard shoul-
der during strategy implementation can disrupt
approaching EVs which often perform time-sensitive
tasks. Such disruptions frequently lead to delays and
substantial losses. To address this issue effectively, the
clearance of lane for EVs is necessary. This task shares
similarities with the process of vehicle merging, where
vehicles from the hard shoulder integrate into the pri-
mary lanes within a designated segment area (Zhou
et al, 2020). In the initial stages of this study,
researchers primarily utilized traffic signals to control
the merging process. For instance, Li et al. (2014)
introduced an ALINEA control algorithm to control
the merging process in the context of ramp metering.
Advancements in emerging technologies have led to
increasing levels of vehicle automation, enabling more
efficient and safer merging operations through collab-
orative vehicle control. The key of effective coopera-
tive control for vehicle merging primarily lies on the
determination of the merging order (Cao et al., 2021;
Papageorgiou et al., 2008). There exist two approaches
for resolving the issue of merging order: the rule-
based method and the optimization-based method.
Rule-based methodologies ascertain the sequence of
vehicle merging by specific rules, which may include
the first-in-first-out rule, the arrival time rule, the
local gap optimization rule, and others. While these
methods are straightforward to implement, they do
not ensure the optimality of the merging solution. In
contrast, optimization-based methods have the cap-
ability to systematically search for the most optimal
local or global merging order, resulting in a more pre-
cise solution (Ding et al., 2020). Awal et al. (2013)
proposed a recursive pruning algorithm with the

optimization objective of total travel time to find
the optimal sequence for merging a set of vehicles on
the main road and ramps. In a similar way,
Fukuyama (2020) proposed a decentralized control
framework within the merging region and utilized
dynamic game theory to optimize vehicle merging tra-
jectories. They applied a zero-suppressed binary deci-
sion diagram (ZDD) approach to solve this problem.
Mu et al. (2021) formulated the merging problem as a
mixed-integer linear programming problem and
employed a heuristic algorithm to solve it
Experimental validation of their method confirmed its
capability to meet performance expectations within a
context of Connected and Autonomous Vehicle
(CAV) traffic flow (Spatharis & Blekas, 2024).

e Reinforcement learning algorithms

The existing methods for optimizing HSR strategies
are relatively conventional and struggle to adapt to
the heterogeneous traffic flow states on highways.
Employing a multi-agent reinforcement learning algo-
rithm for regional control can effectively address the
aforementioned issues. The multi-agent reinforcement
learning algorithm is an extension of single-agent
reinforcement learning, accommodating multiple con-
trol entities. Early reinforcement learning (RL) mainly
focused on tabular and approximate algorithms, suit-
able for tasks with low-dimensional state and action
spaces. To tackle more complex tasks with higher
dimensional state or action spaces, methods with
robust capabilities for high-dimensional data represen-
tation and abstraction are required. Deep neural net-
works are well-suited for this purpose. Deep learning,
with its robust data representation capabilities, has
transformed feature engineering from manual proc-
esses to network-driven extraction, enhancing effi-
ciency and accuracy while addressing the issue of
exploding data dimensions. The combination of deep
learning and reinforcement learning is referred to as
deep reinforcement learning (Mnih, 2013). Deep Q
networks (DQNs), one of the most classic integration
methods, have gained substantial attention due to
remarkable success in gaming applications, conse-
quently leading to the development of various deep
reinforcement learning algorithms (Van Hasselt et al.,
2016). Single-agent deep reinforcement learning algo-
rithms such as Double Deep Q-Networks (DDQN),
Asynchronous Advantage Actor-Critic (A3C), and
Soft Actor-Critic (SAC) have been proposed and
applied across diverse domains, encompassing robot
control, video processing, text mining, and more



(Balmer et al., 2004; Haarnoja et al., 2018; Hou et al.,
2023; Kim et al., 2025; Low et al., 2024; Mnih, 2016).
Nevertheless, in scenarios involving multiple control
entities in a system, such as UAV formation problems,
fleet cooperative navigation, multi-robot path plan-
ning, and similar applications, single-agent reinforce-
ment learning algorithms are no longer suitable.
Consequently, multi-agent reinforcement learning
algorithms have emerged to address these challenges.
Multi-agent algorithms, in contrast to single-agent
ones, are more intricate. Multiple agents not only
interact with the environment but also communicate
with each other (Huang et al., 2024). In recent years,
the Multi-Agent Deep Deterministic Policy Gradient
(MADDPG) algorithm proposed by Lowe et al. (2017)
has become a research hotspot, widely applied in areas
such as energy trading, regional traffic signal coordin-
ation, multi-task resource allocation, and drone swarm
coordination. Under the MADDPG algorithm frame-
work, addressing the optimization problem of HSR
strategies involves segmenting the control region into
multiple sub-regions, each treated as an intelligent
agent. Each agent independently makes control deci-
sions while simultaneously sharing data with other
agents to optimize its policy network. Traditional
heuristic algorithms and Q-learning algorithms for
control optimization often overlook the distinctiveness
of controlled road sections. The MADDPG algorithm
defines reward functions for agents, guiding their
training through interactions with the environment,
ultimately computing the optimal control strategy for
each intelligent agent.

Based on the analysis of the existing researches and
research problem, this paper proposed a multi-agent
reinforcement learning algorithm for optimizing the
implementation effect of HSR strategies in different
traffic scenarios. Furthermore, we utilized the A*
algorithm to address the challenge of merging hard
shoulder vehicles into the primary road lane, particu-
larly during EVs enter the regulated area. Ultimately,
experimental results conclusively demonstrate the
effectiveness of the proposed methodology.

3. Problem formulation and model design
3.1. Statement of the problem

Assume that not all highway segments will implement
the HSR strategy, nor will EVs consistently enter seg-
ments where the HSR strategy is applied during all
time periods. Based on this assumption, as illustrated
in Figure 1, the problem is formulated as a two-level
structure. The first level focuses on optimizing
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strategies for specific highway segments where the
HSR strategy will be implemented, aiming to enhance
overall traffic efficiency, safety, and emissions within
the areas affected by the strategy. The second level
addresses the process of lane clearing when EVs enter
areas subject to the HSR strategy, ensuring that
vehicles on the hard shoulder do not obstruct their
passage.

At the first level, referred to as the major problem,
the main objective is to manage and regulate the use
of the hard shoulder based on real-time fluctuations
in traffic flow. The solution process for this problem
consists of five distinct steps: (1) real-time data collec-
tion, (2) data processing and feature extraction, (3)
HSR strategy definition and optimization, (4) strategy
implementation and data feedback, and (5) strategy
evaluation and adjustment. Initially, real-time traffic
data is collected using highway detectors, capturing
key metrics such as vehicle count, speed, and average
travel time. The data is then cleaned and processed to
extract relevant features, ensuring the quality of the
data for subsequent analysis and optimization.
Following this, the HSR strategy is mathematically
formulated, and optimization algorithms are employed
to search for the optimal strategy. The goal is to
enhance traffic flow, passage efficiency, and other traf-
fic indicators on the highway segments where the
strategy is applied. The optimization goal is to
enhance traffic flow, passage efficiency, and other key
performance indicators on the highway segments
where the strategy is implemented. The optimized
strategy is then implemented by transmitting real-time
strategy information to vehicles, with feedback data
collected after implementation. Lastly, the effectiveness
of the strategy is assessed by analyzing its impact on
traffic flow, accident rates, and emissions. Based on
these evaluation results, adjustments are made to
refine the strategy for the next iteration.

When EVs approach or enter segments where the
HSR strategy is active, it is crucial to ensure their
smooth passage through the areas affected by the
strategy. This concern forms the basis of the second
level, referred to as the subproblem, which specifically
addresses the lane-clearing process for EVs. This sub-
problem is resolved through three key steps: (1) emer-
gency vehicle data collection, (2) lane-clearing
algorithm design, and (3) implementation and evalu-
ation of clearing measures. First, real-time data on
EVs is collected, including their location, speed, and
acceleration, to enable accurate tracking. Building on
this information, a lane-clearing algorithm is designed
to clear vehicles obstructing the EVs movement,
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Two-layer problem framework

‘ Input: Highway real-time road conditions

Major problem

Time-Series Data
Process

Hard Shoulder
Running Strategies

Evaluating Strategies
for Good and Bad

Strategy Execution :
Open or Close

-

Emergency Vehicle
Information

Implementation of
the Liquidation
Program

EV Lane Pre- : E
Clearing ‘ &>

Figure 1. Framework of two-layer problems.

thereby ensuring unobstructed passage. The lane-
clearing measures are implemented, followed by an
evaluation of their effectiveness. Once the EVs exit the
controlled area, the subproblem transitions back to
the major problem, resuming the iterative process to
maintain efficient road management.

Due to the challenges associated with testing strat-
egies in real-world conditions, a simulation platform
has been developed using advanced simulation soft-
ware. This platform enables data collection and strat-
egy  implementation  within  an  interactive
environment. It facilitates the simulation of the HSR
strategy optimization process under varying traffic
conditions, as well as the testing and evaluation of dif-
ferent lane-clearing solutions. In the following sec-
tions, we will provide a detailed overview of the
strategy optimization framework, the iterative process,
and the methods for implementing and evaluating the
lane-clearing algorithm.

3.2. Strategic formulation

In the process of solving the major problem, it is
necessary to define the HSR strategy with mathemat-
ical form. To determine the open state of different
road sections at different time intervals, the design of
the HSR strategy needs to be considered from the
aspects of control distance and time. As depicted in
Figure 2, this study employs a temporal and spatial
discretization approach to formulate the highway HSR
strategies. The total length of the highway segment in
the figure is denoted as L, and this segment is subdi-
vided into multiple discrete sub-segments, labeled as
{li, b, 15, ..,1,}. Each of these sub-segments is the
smallest control unit subject to the HSR strategy, with
two potential states either open or close. When

sub-segment ; is in the open state, it facilitates the
passage of vehicles from the primary lane, allowing
them to transition into the sub-segment. Conversely,
if the sub-segment is closed, it restricts access for
vehicles within the primary lane or those traveling
straight from the preceding sub-segment. Let each
sub-segment [; correspond to a variable ¢;, which is a
0-1 categorical variable. When ¢; = 1, it means sub-
segment /; is open; when ¢; = 0, it means sub-segment
li is closed. Then the mathematical representation of
the strategy for the control segment L is:
[c1,¢2, €35 ... cn|. Employing a similar approach for
temporal discretization, we define the total duration
of the control segment as T. Each time interval,
denoted as Tj, constitutes a control cycle for the
modification of the open and closed status of individ-
ual sub-segments. The strategy of each control cycle is
expressed as: CT;=[c;=0,c,=1,c3=0,....,¢, = 1].
The HSR strategy is then composed of the
combination of strategies from all  cycles:
[CT, CT,CTs3,...,CTy].

3.3. Modeling the problem

Figure 3 provides a schematic representation of the
major problem and sub-problem. To enable the trans-
mission of the HSR strategy information, a crucial
assumption is made, wherein a signal bar is positioned
at each sub-segment J;. These signal bars have dual-
color indicators: a red light signifies that the segment
is closed, while a green light indicates that it is access-
ible for entry and exit. These signal bars are designed
to facilitate bidirectional communication with con-
nected vehicles, transmitting state information of seg-
ment. Connected vehicles are equipped with sensors
to perceive the positions of surrounding vehicles, as
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well as to gather data like their speeds, accelerations,
the status of hard shoulder segment, and the next
open decision time. Moreover, the highway lanes also
can collect different information by equipping various
detection devices, including the number of vehicles
within each roadway, waiting times for vehicles, aver-
age speeds of roadways, average travel times, roadway
occupancy rates, and other data (Azimjonov &
Ozmen, 2021).

In the major problem, the EVs did not enter the
regulated road section. As illustrated in Figure 3,
within a control temporal interval denoted as T;, the
sub-segment opening strategy is defined as follows:
[c1 =0,c0=1,¢c3 = 1,¢4 = 1,¢5 = 0]. During this tem-
poral interval, the signal indicators for sub-segments
L,l3, and I; illuminate in green, transmitting instant-
aneous signals to the vehicles driving on the lanes. A
connected vehicle in the main lane receives this signal,
or the driver observes the color of the signal bars,
allowing for a lane change to access these three sub-

segments. For sub-segments /; and 5, the signal bar
displays as red, permitting only EVs to access them.
Once an EV enters, the situation transitions from the
major problem to the sub-problem. In this context,
ensuring unimpeded EV travel is paramount, which
necessitates the clearance of vehicles on the hard
shoulder. As depicted in Figure 4, utilizing a grid-
based approach, all lane vehicles are divided into cells.
Each vehicle corresponds to a cell, forming an M x N
vehicle arrangement matrix. Vehicle behaviors, includ-
ing lane changes and straight-line driving, are trans-
formed into movement between cells. The movement
of each vehicle to an adjacent cell leads to a new
arrangement. The hard shoulder lane corresponds to
one of the columns in the matrix, and the task at
hand involves the transfer of all vehicles from this col-
umn to other cells. As in the example in Figure 4, the
black dashed box indicates the column corresponding
to the hard shoulder lane. The clearing task is com-
pleted by moving vehicles No. 1 and No. 2 to the left
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Figure 4. Lane clearing process in HSR.

two columns. In this scenario, an issue arises wherein
vehicle No. 2 is obstructed by the presence of vehicle
No. 3. Consequently, it becomes imperative to design
an effective algorithm with the purpose of determine
the optimal resolution for this clearing problem.

4. Methodology
4.1. Multi-agent reinforcement learning

Reinforcement learning (RL) is an important branch
of machine learning. It is based on a trial-and-error
learning mechanism, where an optimal policy is
trained by agents interacting with its environment to
maximize rewards. Deep reinforcement learning
(DRL) combines reinforcement learning with deep
learning as a new approach to solve complex control
problems. When multiple control objects are involved
in the environment, multi-intelligence deep reinforce-
ment learning emerges. Specifically, multi-agent
reinforcement learning refers to a method where mul-
tiple agents, in the context of sequential decision-
making problems, interact with the environment and
learn to achieve an optimal equilibrium state for the
task under predefined reward rules. In general, we
model the problem of multi-agent reinforcement
learning as a partially observable Markov decision
problem (Busoniu et al,, 2008). The decision-making
process, involving N agents, is described by the tuple
(N,S, A, P, S 1, R, ). Here, S;={0; x 0Oy x -+ X%
Oy} represents the environmental information data
observed by all agents at time ¢, denoting the current
state. A; ={a; X a, X --- X ay} denotes the joint
action taken by all the agents under their existing pol-
icy, where each action a; belongs to the action space
(a; € Q). The state transition function, denoted as P,
describes the probability of transitioning from the cur-
rent state to the next state. S;;; represents the state at
the next time step. R; = {r;,1,....,1x} are the rewards
received by each agent during the current state transi-
tion. The discount factor, y € [0,1], is used to calcu-
late the expected cumulative reward. At time t, each

empty cell —>

0

0

0

0
OJORM

0 M x N

agent N; selects an action a; based on their individual
policy function m; and forms a joint action A; which
is subsequently executed. Then, the state of the envi-
ronment is transformed to S;;;, and all agents receive
corresponding rewards R,. Typically, at a certain
moment T, the interaction between agents and the
environment concludes when the tasks of all agents
are completed or the reward criteria are met. The pri-
mary objective of multi-agent reinforcement learning
is to determine a set of optimal policies,
{m, 725 .., AN}, that maximize the expected cumula-
tive discounted reward of all agent: maxE|> [ 7'R,].

4.2. MADDPG algorithm

In a multi-agent system, different relationships exist
between agents, often determined by the designed
objectives. Depending on the specific optimization
objectives, relationships are broadly classified into
three primary categories: cooperation, competition,
and mixed tasks. Cooperation is particularly applicable
in practical production scenarios. Notably, the Multi-
Agent Deep-Deterministic Policy Gradient Algorithm
(MADDPG) has emerged as an efficient multi-agent
reinforcement learning algorithm for ‘cooperative-
competitive’ mixed tasks. As one of the most popular
multi-agent reinforcement learning algorithms, it has
been widely applied across various domains
(Gronauer & Diepold, 2022). This algorithm extends
from the single-agent reinforcement learning algo-
rithm, DDPG (Deep Deterministic Policy Gradient),
employing the well-known Actor-Critic (AC) frame-
work. The DDPG algorithm can deal with the task of
continuous action space, which mainly consists of two
critical networks, an Actor network, and a Critic net-
work. The Actor network is responsible for receiving
state information and outputting corresponding
actions, representing the agent’s policy. The Critic
network models the state value Q-function to
evaluate policies and perform parameter updates. Both
the Actor and Critic networks encompass two



sub-networks: one designated as the ‘current network’
and the other as the ‘target network’, with identical
network architectures. The MADDPG algorithm uti-
lizes the foundation of the DDPG algorithm to
advance it and extend its applicability to multi-agent
systems. It operates within a framework of centralized
training and decentralized execution. Specifically, it
conducts centralized training by training a global
critic network Qg Wwith inputs from all agents to
update the policy networks 7; for each agent. The cur-
rent Actor network, corresponding to the agent’s pol-
icy, receives the environmental data observed by the
agent, calculates the distribution of the agent’s actions,
and selects the actions through the ‘e — greedy’ meth-
odology. Subsequently, agents execute these actions
and receive environmental rewards, while the Critic
network scores actions based on both actions and
environmental states. The Actor network updates the
network parameters based on the environmental
rewards and scores, enabling the agents to select
actions that result in higher cumulative rewards.
This iterative process continues until parameter
updates are complete, yielding the optimal policy.
Assuming 9; represent the current Actor network
n; parameters and the Critic network Q as 0.
Then the set of all Actor networks is II=
{71'1(5,91), 7[2(5, 92) s TEN_l(S, SN_1>, ﬂfN(S, SN)} for N
agents. where s= {o; X 0, X --- X oy} denotes the
environmental data acquired by all agents. The
target Actor network, which shares the same
structure as the current Actor network, denoted as
I = {(5,9). 745, 95) - - iy (5 9y_, )y s, 9.
The Critic network of all agents can be represented
as: Q=1{Q' (s,a,01),Q(s,a,0,)--- Q" (s,a,0n_1),
QV(s,a,0y)}. The target Critic network is: Q =
{Q'(s,a,0,),Q)(s,a,0,") - - -Qn-1(s,a,On-1"), QN (5, 4,
On')}, where a={a; xa; x--- xay} denotes the
joint action of agents. The update formula for the
Critic network is as follows:

LOSS(0) = Buare Q50,00 =]y

=r+ VQ:[I (S/’ al’ 91')|u’ =7 (0x) (1)

kK Tk

Where y is the discount factor, r; is the reward of
the agent, and 7’ denotes the target Critic network.
According to the definition of cumulative discount
reward, for agent i: J(9;) = E[R;]. Its gradient can be
written as:

Vo () = E(sa)~p[Vemi(ailsi) Ve, QF

(s, apd - - “N)|ai:nsi(3i)] @
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Where D represents an empirical data replay pool
and is used for network training by sampling data.
It is composed of tuples (s,al,ab,....a%_;,
ah,rh 1N sei1). Por  the  target  Actor
network and the target Critic network the network
parameters are updated by using the soft update
mechanism:

99" = (1 - 9)9% + 99%’ (3)
0 = (1-0)0™ + oo™ (4)

Where 92,0 are the parameters of the target
Actor, target Critic network respectively. 0 is the
update step size, which is used to control the speed of
updating the network parameters.

4.3. LSTM algorithm

Long Short-Term Memory (LSTM) is a type of recur-
rent neural network that evolved from the traditional
Recurrent Neural Network (RNN) (Hochreiter, 1997).
LSTM effectively addresses the limitations of tradi-
tional RNNs, enabling the processing of long time
sequences, feature extraction, and resolving long-term
dependencies. As shown in Figure 5, its network
structure is built on a chain of repeating neural units,
with each unit having a simple architecture, including
an input layer, a hidden layer, and an output layer
(Xu et al, 2022). In the hidden layer, it replaces the
basic RNN units with memory cells that consist of
three crucial gates: the input gate, forget gate, and
output gate, along with a memory state. Each gate
comprises activation functions and element-wise
multiplication functions. These gates are responsible
for retaining useful information from the current
sequence, selectively forgetting previous data, and
transferring data information. The memory state is
responsible for retaining data states, selectively
transmitting information, and organizing all memory

Figure 5. Structure of long short-term memory (LSTM).
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cells. As illustrated in Figure 5, f;, i;, and o, are the
output signals from the three gates, while C; repre-
sents the current memory state and Ci_; signifies the
state information that needs to be retained from
the previous time step. Notably, x; corresponds to the
input data at the current time step, h,_; refers to the
output information from the hidden layer at the pre-
vious time step, and h, denotes the hidden layer out-
put information (Yan et al., 2021). The formula for its
calculation is as follows:

Forget: f; = a(Wy-[xi, hi—1] + by) (5)

Input: iy = o(Wi-[xs, hi—1] + b;) (6)

Output: o; = a(Wo:[xs, hi_1] + b,) (7)
Candidate Data: C; = tanh(We-[x,, ] + bc)  (8)
Record State: Ct = f; ® Co_y + iy @ C; ©9)
Hidden Layer: h; = o, @ tanh(Cy) (10)

In the equation, ¢ denotes the sigmoid function;
W, b denote the weight matrix and offset, respectively;
tanh denotes the hyperbolic tangent function; and &
is an elemental product operator.

4.4. Optimization algorithm: LSTM-MADDPG
algorithm

Highway traffic flow data exhibit characteristics of
substantial dimensions and extended time series. The
process of feature extraction from traffic flow
sequence data serves as a fundamental procedure in
data processing. In this study, traffic flow data col-
lected through detector is used to characterize the
traffic state of a highway segment over a temporal
interval, which serves as the basis for formulating
HSR strategies. Notably, LSTM networks possess
robust capabilities in processing sequential data,
effectively extracting features from extended time
sequences. As depicted in Figure 6, we incorporate
LSTM networks into the MADDPG algorithm as a
module for feature extraction from environmental
observation data. This combination significantly
improves the handling of long-term observation data
from various highway segments. Conventional
MADDPG algorithms typically lack a temporal
dimension in their input data which just provide one-
dimensional or multi-dimensional representations of
environmental information. Since the traffic flow data
have a temporal dimension characteristic, extracting
the features of the data through LSTM network can
enhance the effectiveness of the MADDPG algorithm.
Furthermore, to enhance the effectiveness of the
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Figure 6. Architectural framework of the LSTM-MADDPG algorithm.



training process for the LSTM-MADDPG algorithm, a
series of measures is instituted.

e Prioritized experience replay (PER) (Schaul et al.,
2015)

within the training process for conventional reinforce-
ment learning algorithms, the utilization of experience
replay is a common practice. To enhance the effi-
ciency of learning from training data in the
MADDPG algorithm, a prioritized experience replay
approach is adopted. This methodology, in conjunc-
tion with the loss function derived from the Critic
network, computes a prioritization basis denoted as L;
for each data sample. The prioritization basis £; is
calculated according to the following formula:
L; =|Q¥(s,a,0;) — y;|.The priority P(i) of data sample
i is given by the following two equations:

P, = (|L]| +T)" (11)
P;
2 _kPr
where o is a hyperparameter between 0 and 1 used
to control the preference of the empirical priority

in the sampling process. 7 is a parameter greater
than 0.

pP(i) = (12)

e Important sample (IS)

In the prioritized experience replay algorithm,
individual samples are assigned unique priorities
which determine the sampling frequency for each
sample. Samples with higher priorities are selected
more frequently, while samples with lower priorities
have a minimal or zero sampling frequency. Such an
approach alters the original distribution of training
samples and can lead to unexpected convergence of
network parameters, resulting in bias. To address this
bias issue, we employ the technique of importance
sampling. For each sample’s priority, we calculate its
importance sampling weight, denoted as W,
Through priority-based sampling, we collect a set of
experience samples along with their corresponding
sample weights, W;. Subsequently, based on these
sample weights and the network’s loss function, we
calculate the sample losses and perform a weighted
summation. Specifically, we multiply the loss value
computed for each sample by its corresponding
weight and then sum these values, updating the net-
work parameter. The formula for this weighting is
shown as follows:
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w; = PONT / ) (13)
max j

e Credit Assignment (CA)

In a multi-agent system, evaluating each agent’s
contribution to the overall performance through credit
assignment helps prevent the occurrence of lazy
agents. The MADDPG algorithm designs independent
reward function for each agent to mitigate bias in
assessing agent contributions. Additionally, each agent
maintains cooperative relationships with other agents
through a global Critic network.

4.5. Improved A* clearing algorithm

The A* algorithm is a heuristic search algorithm
widely applied in graph search problems like path plan-
ning (Hart et al., 1968; Seet et al., 2004). It combines
the greedy strategy from heuristic methods with the
breadth-first search algorithm from shortest path search
algorithms. Heuristic methods in which past empirical
information is rationally utilized to improve the speed
of the algorithm, often can only provide approximate
optimal solutions. On the other hand, breadth-first
search is a precise algorithm that disregards computa-
tion time, theoretically capable of finding the shortest
path for a given path planning problem. The A* algo-
rithm combine these two algorithms with their
strengths. Its core lies in the design of two essential
functions: one that estimates the cost of the best path
from the current search node to the target node and
another that calculates the total cost of the paths
searched so far. The algorithm evaluates nodes in the
graph by computing the sum of these two functions for
each node, thereby determining the direction of each
search node and finding the shortest cost path.

As illustrated in Figure 7, for the purpose of EV
lane clearing, we discretize the area spatially where
vehicles travel. Every vehicle is mapped to a grid cell in
this spatial discretization system. Vehicle movement is
thus described as transitions between these grid cells.
Initially, the vehicle’s position is represented as a 0-1
matrix, which serves as the initial node. After complet-
ing EV lane clearing, the arrangement matrix of vehicle
positions becomes the target node. Vehicle position
matrices are altered by moving left or right within the
grid cells, with each arrangement matrix representing a
node. Different movements of various vehicles from
the initial node generate different nodes, interconnected
to form a graph. Multiple paths emerge between the
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Figure 7. Design of the a* algorithm framework.

Table 1. The improved a* algorithm.

Improved A* Algorithm

1. Define t as the unit cost of each vehicular movement

2. The initial node, denoted as S, and the terminal state, represented as Terminate

3. Design the function G(n): represent the cost of the path from the initial node S to node n

4. Design the admissible heuristic function H(n): estimate the cost of reaching the target state Terminate from node n

5. Design the node evaluation function F(n): serves to assess the overall cost of a given node, F(n) = G(n) + H(n)

6. Initialize the open list (Oj5r) and add the initial node S to the list. Initialize the mark list (M)

7. Calculate the F function values for all nodes in the open list and select the node with the minimum value, denoted as O

8. If the node O belongs to the target state Terminate, the process concludes. If it does not, node O is added to My, and its adjacent nodes are placed
into Oy, and the process repeats at step 7.

9. After the termination of the algorithm, the trajectory of the vehicle will be determined by a path backtracking process.

initial and target nodes, and the shortest path search
provides the optimal lane clearing solution.
Consequently, the original problem of lane clearing is
transformed into a graph shortest path search problem.

This study employs the improved A* algorithm as
the solution methodology for finding the shortest
path. To reduce the computational complexity of the
search process, it is assumed that only one vehicle
moves at a time in each step. Since the existence of
multiple potential arrangements satisfying the requis-
ite conditions in the context of EV lane clearing, the
A* algorithm is enhanced by redefining the termin-
ation criteria. Instead of terminating at a specific tar-
get node as before, the new termination condition
essentially comprises a set of many nodes. In the EV
lane clearing problem, the termination state is defined
as the condition where all vehicles on the EV lane
within a specified area have been completely cleared
(Li et al, 2022). Thus, the improved A* algorithm,
when combined with the original algorithm steps, is
shown in Table 1.

5. Experimental elements and design
5.1. Design of experimental factors

5.1.1. Agent
In accordance with Figure 8, this study combines con-
secutive adjacent road segments into a unified entity,

which is designated as an agent (AGENT;). Assuming
that each agent controls two consecutive road seg-
ments, denoted as [; and I, managing their open and
closed states while collecting data information. The
entire set of road segments is divided into N agents,
with each agent controlling an equal number of
segments.

5.1.2. Action space

Each agent controls a combination of consecutive
road segments, and its action space consists of the
various combinations of open and closed states for
these segments. As Figure 8, each agent controls two
sub-segments (such as: /1, 1,), then the action space will
be: {(0,0),(0,1),(1,0),(1,1)}, and the corresponding
control variables take the values of: {(¢; =0, ¢t =
0), (Ci =0, Cir1 = 1), (C,‘ = 1,C,'+1 = O), (Ci = 1,Ci+1 =
1)}. Since each agent controls the same number of
sub-segments, each agent has the same action space.
The action space for each agent changes with the
number of road segments it controls.

5.1.3. State

Agents gather information from the environment to
determine their control strategies. Information
observed by agents consists of two parts: autonomous
agent-specific observations and global observations for
the entire regulated segment. The autonomous
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Figure 8. Design of individual components in agents.

observation information for each agent is denoted as
Sagent_i = |G WV, tt,0cc], where ¢ represents the total
number of vehicles traveling on the roadway, w indi-
cates the waiting time of the roadway, v represents the
average speed of vehicles on the managed roadway, tt
denotes the average travel time of vehicles on the
roadway, and occ indicates the occupancy rate of the
roadway. The global observation information is repre-
sented as Senyironment = [C, W, V], where C denotes the
total number of vehicles in the global network, W is
the global waiting time, and V represents global traffic
data. Each agent’s observation data is represented as
Si = [Sagent;» Senvironment], and the overall network state
information can be expressed using the following for-
mula: S = [51,5, ..., Sn—1, Sn]-

5.1.4. Reward function

To improve highway traffic operation through the
implementation of HSR, this study designs reward
functions from three perspectives: efficiency, safety,
and emissions. From an efficiency standpoint, the
total travel time of vehicles is considered as the effi-
ciency reward function.

i i
re_ﬁ‘ - 10glO (Ctoml_tmvel_time> ( 14)
T
C;otal_tmvel_time = Z C; (15)
t=0

where ¢}, . denotes the total travel time of
the i-th agent during a period of T.

From a security perspective, the safety reward func-
tion is designed by incorporating two safety indica-
tors: Time Exposed Time-to-Collision (TET) and
Time Integrated Time-to-Collision (TIT). TET repre-
sents the total time vehicles spend in a risky driving

state, where vehicles are considered in a risky state

when their Time-to-Collision (TTC) falls below a
threshold, typically around 2s (Li et al., 2022). On the
other hand, TIT represents the integral of the vehicle’s
collision-time curve, a metric utilized for the compre-
hensive assessment of vehicular safety. The indicator
of safety combing TIT and TET is shown as follows:

r;afe = o xlog,, (tit;) + f xlog,,(tet;) (16)

To reduce vehicle emissions on the highway, an
emission reward function is designed based on the emis-
sions of three gases: carbon monoxide (CO), carbon
dioxide (CO,), and nitrogen oxide (NO). Herein, cico
represents the CO emissions of the i-th agent, ci,
denotes the CO, emissions produced by the i-th agent,
and ¢}, is the NO emissions generated by the i-th agent.
Tom = K %1084 (i) + 1+ 101 (cooo) + 7 * 10g,g (o)

(17)

The reward function r for the total number of all
agents is designed as follows:

N
r= E P* Ty + O KT +TxT,,

i=1

(18)

5.2. Design of experimental simulation

To validate the effectiveness of the proposed method,
SUMO simulation software is employed for case ana-
lysis. As illustrated in Figure 9, a simulation segment
model is established for a 6.2km highway section
between “Xingcun Interchange” and “Ganggou Hub
Interchange” in Jinan city, Shandong province. This
research segment is divided into 16 sub-sections, and
the length of each sub-segment ranges from 300 to
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Figure 9. Simulation section.

400 meters. The width of the hard shoulder is 3.5
meters, while the main lane road width is 3.75 meters.
To investigate the adaptability of the proposed
methodology under different traffic flow conditions,
traffic flow simulation data is categorized into four lev-
els based on the service levels of the highway. Highway
service levels are generally categorized into four types,
corresponding to free flow, light congestion, heavy con-
gestion, and severe congestion. Under different service
levels, the proposed method is applied to optimize the
HSR strategy to achieve maximum control benefits.

In accordance with the standards in highway ser-
vice level criteria of China, the traffic flow data for
these four service levels are defined as follows: 1400
vehicles per hour, 3000 vehicles per hour, 3750
vehicles per hour, and 4300 vehicles per hour.
Furthermore, different vehicle types are also consid-
ered in SUMO simulation using actual traffic flow
data collected in Jinan City. It contains three vehicle
types: private, delivery, and trucks, which correspond
to small, medium, and large vehicles, respectively. The
ratio of these three categories of vehicles account for
75%, 12.5%, and 12.5%. Considering driver physio-
logical response characteristics, the Widemann 99 and
LC2013 models are selected to describe vehicle follow-
ing and lane-changing behavior in SUMO simulations.

6. Analysis and discussion of findings
6.1. Results of training

Figure 10 illustrates the convergence results of the
reward function in response to the training of the L-
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MADDPG algorithm under four service levels. In
each level, the L-MADDPG algorithm, the MADDPG
algorithm, no open (ZEROS), and all open (ALL)
were tested as four distinct HSR control strategies. In
Figure 10(a), the purple curve represents the conver-
gence results achieved by the L-MADDPG algorithm,
which exhibits higher reward convergence compared
to the ZEROS strategy. For the second and third ser-
vice levels, the L-MADDPG algorithm demonstrates
higher convergence rewards compared to the
MADDPG baseline algorithm and ZEROS, indicating
that L-MADDPG becomes more effective in highway
performance after congestion occurs. However, at the
fourth service level, the difference in rewards among
the four strategies become less pronounced. This find-
ing suggests that the influence of adjusting the HSR
strategy on highway traffic flow is constrained during
periods of severe congestion. From the four graphs in
Figure 10, it is evident that the strategy computed
using the L-MADDPG algorithm consistently yield
higher reward values compared to the ZEROS
strategy.

6.2. Comparative analysis of various metrics

To further assess the impact of various algorithms on
highway operation, this study conducted comparing
tests of the L-MADDPG, MADDPG, ZEROS, and
ALL methods across three aspects: efficiency, safety,
and emissions. Regarding efficiency, the Total Travel
Time was selected as a comparative metric. For safety
evaluation, a composite safety indicator consisting of
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Figure 10. Training results of the algorithms.

TIT and TET was utilized to assess the safety level of
highway over a specified period (Wu et al.,, 2020). In
term of emissions, three major gases—CO, CO,, and
NO—were selected as crucial measures to assess the
level of environmental emissions on the highway.
Under the four service level conditions, each strategy
was tested ten times, and the averages were taken as
the final results to enhance the validity of the test
outcomes.

6.2.1. Efficiency metrics

Figure 11 presents test results for total travel time
across the four methods. Total travel time is a signifi-
cant measure that reflects the duration during which
highway lanes are occupied by vehicles, with shorter
times indicating higher highway operational efficiency.
It is evident that under all four service level condi-
tions, the L-MADDPG algorithm consistently
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outperforms the other three strategies, highlighting
the significant effectiveness of the proposed method in
enhancing highway efficiency. Specifically, at the both
second and thrid service level, the L-MADDPG algo-
rithm achieves a reduction in total travel time of high-
way vehicle by 11.4 and 7.6h, respectively, in
comparison to the ZEROS strategy. From the first to
the fourth service level, as vehicle density increases
and congestion intensifies, the optimization space for
vehicle travel time decreases.

6.2.2. Safety metrics

Figure 12 presents results of two safety indicators. The
TIT value calculates the cumulative time during which
vehicles on the highway are in a hazardous state,
effectively reflecting the safety of highway traffic.
From the figure, it is evident that as the service level
improves, the cumulative duration of vehicles in
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hazardous driving situations significantly increases
with the higher volume on highway. This observation
suggests that an increase in vehicle density and the
time vehicles spend in hazardous driving conditions
may lead to a higher frequency of accidents.
Comparatively, during the implementation of the HSR
strategy demonstrates, a substantial reduction in TIT
in contrast to the ZEROS strategy can be observed,
resulting in an obvious improvement of safety.
Notably, at service level 4, the HSR strategy devised
by the L-MADDPG algorithm leads to a significant
26.1% reduction in the TIT for all vehicles. While TIT
primarily focuses on the duration of vehicles in haz-
ardous driving conditions, the TET value reflects the
frequency of highway vehicles below a certain TTC
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Figure 11. Comparison of efficiency across various algorithms.
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Figure 12. Comparison of safety across various algorithms.

threshold. The comparison of the two highway safety
indicators, TIT and TET, reveals that the L-MADDPG
algorithm effectively reduces the traffic risk at
different service levels, smooth traffic
operations.

ensuring

6.2.3. Emission metrics

Figure 13 presents a comparison of the emissions of
three gases: CO, CO,, and NO. CO and NO are
harmful gases, and their excessive emissions exacer-
bate environmental pollution, posing significant health
risks. CO,, as a greenhouse gas, contributes to rising
atmospheric carbon dioxide levels, leading to phenom-
ena like the greenhouse effect and global climate
change. As traffic volumes increases, emissions from
vehicles also grow. The implementation of HSR strat-
egy on highways facilitates faster vehicle exit, resulting
in reducing vehicular emissions. The application of
the L-MADDPG algorithm to determine HSR strat-
egies for different service levels has different impacts
on vehicle emissions. At the first service level, com-
pared to the ZEROS strategy, the implementation of
the HSR strategy through L-MADDPG algorithm
results in a significant reduction of CO emissions by
3625.35Kg, CO, emissions by 461787.71 Kg, and NO
emissions by 2159.68Kg, effectively reducing pollu-
tion. At service level 2, the reduction in CO emissions
is even more obvious, with a decrease of
599107.08 Kg. Notably, at the fourth service level, the
NO emissions of L-MADDPG algorithm are lowered
by 2440.63Kg compared with the ZEROS strategy,
demonstrating effectiveness of the L-MADDPG algo-
rithm. Experimental findings demonstrate that opti-

mizing hard shoulder strategies through the
b. Time Exposed Time-To-Collision
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Figure 13. Comparison of emission across various algorithms.

L-MADDPG algorithm leads to a obvious reduction
in emissions of three types of pollutants.

6.3. Emergency vehicle performance metrics

Implementation and optimization through the HSR
strategy yields improvement for highway efficiency.
Nevertheless, the hard shoulder, serving as a pathway
to ensure smooth EVs travel on the highway, should
consider its original function. Focusing on this, this
study introduces an improved A* algorithm for clear-
ing the hard shoulder lane to ensure access for EVs
entering the regulated area. As in Figure 14, five strat-
egies, ZEROS, ALL, ALL-A* algorithm, L-MADDPG
algorithm and L-MADDPG-A* algorithm, are tested
under four service level introduced before. Algorithm
effectiveness is evaluated through the analysis of two
key metrics related to EV performance: vehicle travel
time and the braking times of EVs. In Figure 14(a), a

comparison of EV vehicle travel times revealed a con-
sistent reduction across all four service level condi-
tions when using the A* algorithm for lane clearing.
Notably, at service level 4, the L-MADDPG-A* algo-
rithm reduced EV travel time by 18.1% compared to
the ALL strategy. Both stopping and slowing down of
vehicles significantly affect normal vehicle operation,
and this study statistically compared the total stops or
slowdowns of EVs during the experiment. In
Figure 14(b), it was observed that the lane clearing
through the improved A* algorithm results in a
marked reduction in braking times of EVs. At the
third service level, the L-MADDPG-A* algorithm
reduced the braking times by 451.6%, thus greatly
enhancing the smoothness of EVs operation. It is
important to note that each optimal lane clearing
solution incurs a certain clearing cost using the
improved A* algorithm to clear lane. A larger clear-
ance cost implies a greater number of vehicles that
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a. Comparison of Travel Time of EV Under Different Strategies
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Figure 14. Comparison of EV performance across various algorithms.

need to be cleared. A comparison was made between
the ALL-A* algorithm and the L-MADDPG-A* algo-
rithm in terms of the total lane clearing cost for the
entire EV travel process under four service level. The
results show that as traffic volume increases and more
vehicles transition from the main road to the hard
shoulder lane, lane clearing becomes more challeng-
ing. Figure 14(c) illustrates that the ALL-A* algorithm
incurs a higher total cost in all four service level con-
ditions compared to the L-MADDPG algorithm,
implying that the L-MADDPG-A* algorithm needs
the clearance of fewer vehicles. This further demon-
strates that the optimal HSR strategy obtained through
the L-MADDPG-A* algorithm can reduce the likeli-
hood of EV vehicles being disrupted by vehicles on
the main road. In summary, the comparison of mul-
tiple indicators reveals the necessity of using the A*
algorithm for hard shoulder lane clearing, which has

significant implications for ensuring the smooth travel
of EV vehicles.

6.4. Comparison result on the entire road segment

To investigate how the traffic changes on different
lanes after EVs enter the regulated area, we selected
lane average speeds for analysis. As shown in
Figure 15, the speed variation of two main lanes and
one hard shoulder lane was displayed under four ser-
vice level. In Figure 15(a), at lower service levels with
lower traffic volume, the various strategies resulted in
similar average vehicle speeds. However, with increas-
ing traffic volume, the lane average speed decreased,
particularly under the ZEROS strategy. On the other
hand, the ALL strategy enables smoother and faster
vehicle travel, as the hard shoulder helps alleviate part
of traffic burden. By optimizing the strategy through
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Figure 15. Comparison of average speed on different lanes.

the L-MADDPG-A* algorithm to open the hard
shoulder, main road vehicles could enter the hard
shoulder in the appropriate areas, reducing the num-
ber of vehicles on the main road. This led to higher
lane average speeds compared to the ZEROS strategy.
Notably, the yellow and red areas in Figure 15 repre-
sent the difference in average speed between the
ZEROS strategy and the L-MADDPG-A* algorithm’s
optimized strategy. It is found that under the four ser-
vice level conditions, the utilization of the L-
MADDPG-A* algorithm has demonstrated an
enhancement in the average road speed and a reduc-
tion in the time vehicles occupy the highway. This
indicates that optimizing HSR strategies through
the L-MADDPG-A* algorithm effectively enhances
highway operational efficiency while ensures smooth
traffic flow.

7. Conclusion

HSR strategies have been widely implemented in
many countries, with numerous positive impacts on
highway traffic operations. However, addressing how

HSR strategies can positively affect highway efficiency,
safety, and vehicle emissions while ensuring smooth
passage for EVs remains a challenge. Based on the
mathematical model of HSR strategy, we proposed a
MADDPG algorithm combined with LSTM data fea-
ture extraction to optimize HSR strategies. To ensure
unimpeded EV travel, an improved A* algorithm was
employed to find the optimal lane clearing solution.
The effectiveness of the proposed methods was vali-
dated through experiment using the SUMO simula-
tion software. The experimental findings revealed the
superior performance of the L-MADDPG algorithm in
terms of training reward convergence across all four
service levels when compared to other strategies.
Moreover, an evaluation encompassing total travel
time, TIT metrics, CO emissions and others demon-
strated the effectiveness of the L-MADDPG algorithm.
The application of the improved A* algorithm for
lane clearing yields significant reductions in travel
time of EVs, as well as braking times. These findings
underscore the effectiveness of opening hard shoulders
for highway traffic conditions across different service
levels. It is worth mentioning that optimizing HSR
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strategies requires consideration of EV entry into
regulated area, and lane clearing through the algo-
rithm can effectively guarantee the smooth passage
of EVs.

Although this study has made progress in optimiz-
ing the HSR strategy, several limitations remain. First,
the study does not account for external factors such
as extreme weather conditions or construction activ-
ities, which could significantly impact traffic flow and,
consequently, the effectiveness of the HSR strategy.
Future research could incorporate additional external
variables, such as weather variations and construction
influences, to enhance the model’s adaptability across
diverse scenarios. Second, this study primarily focuses
on the interaction between the HSR strategy and EVs,
without adequately exploring the combined applica-
tion of the HSR strategy with other active traffic man-
agement measures, such as variable speed limits and
ramp metering. Future studies could investigate the
integrated optimization of the HSR strategy alongside
these measures to address complex and dynamic traf-
fic scenarios, thereby improving the overall efficiency
and safety of traffic ~management
Furthermore, future research could consider scenarios
where all vehicles are intelligent, connected, and
autonomous, capable of real-time, latency-free com-
munication with one another. Under such conditions,
the hard shoulder could be treated as a regular lane.
From the perspective of autonomous vehicle control
and lane-changing behavior, the smooth passage of
emergency vehicles could be ensured through precise
vehicle control mechanisms. In this scenario, the core
challenge of optimizing the hard shoulder strategy
would shift from traditional traffic management to the
control of autonomous vehicles. This shift could fur-
ther enhance the adaptability and dynamic adjustment
capabilities of intelligent transportation systems. Such
research would provide new perspectives and solu-
tions for the integration of traffic management and
autonomous driving technologies.
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