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Optimization of hard shoulder running on highways using multi-agent 
reinforcement learning considering emergency vehicles

Hu Lipeng, Tang Jinjun, Zhe Wang, Zhitao Li, Mingyang Li, and Zeng Jie 

Smart Transport Key Laboratory of Hunan Province, School of Traffic and Transportation Engineering, Central South University, 
Changsha, China 

ABSTRACT 
With increasing travel demand, highway congestion and accidents have become more fre
quent. As an essential component of intelligent transportation systems (ITS), Hard Shoulder 
Running (HSR) provides a dynamic strategy to mitigate congestion by temporarily opening 
shoulder lanes, yet traditional methods often fail to adapt to real-time traffic changes and 
overlook the shoulder’s critical role in ensuring emergency vehicle access. This study pro
poses a novel HSR optimization framework based on the Long Short-Term Memory (LSTM) 
and Multi-Agent Deep Deterministic Policy Gradient (MADDPG) reinforcement learning algo
rithm, integrated with an improved A� algorithm for EV lane clearing. LSTM is used to 
extract temporal features from traffic data to support intelligent decision-making in 
MADDPG, enhanced with prioritized experience replay and importance sampling. The EV 
lane-clearing task is formulated using graph theory, and the improved A� algorithm deter
mines the optimal path for clearing. A simulation case was developed using Simulation of 
Urban MObility (SUMO) for a section of the Jinan City Ring Highway, China, evaluating four 
levels of traffic service. Results show the proposed method reduces total travel time by 
14.6%, Time Integrated Time-to-Collision (TIT) by 45.2%, and CO2 emissions by 11.9%. 
Additionally, with EV intervention, braking times are reduced by up to 376.3% and travel 
time by 18.1% using the improved A� strategy. These findings demonstrate that the inte
grated LSTM-MADDPG and A� approach effectively enhances highway traffic efficiency, 
safety, and sustainability under complex real-world conditions.
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1. Introduction

With the rapid development of the economy, the 
increasing number of vehicles on highways has led to 
significant issues, including congestion, accidents, and 
elevated local air pollution. ITS have emerged as an 
effective solution, leveraging dynamic management 
technologies to implement HSR—the temporary use 
of the hard shoulder to improve road capacity and 
alleviate congestion. As a core service of ITS, HSR 
dynamically adjusts the operational status of the 
shoulder lane through real-time traffic monitoring, 
variable message signs (VMS), and algorithmic opti
mization methods. Since the 1980s, several European 
countries, including the United Kingdom, France, and 
Germany, have been utilizing HSR as a management 
measure to address highway congestion issues 
(Guerrieri & Mauro, 2016). The hard shoulder refers 
to the part of the shoulder adjacent to the main lane, 
designated for the stopping of vehicles or the passage 

of special vehicles during emergencies. Considering 
the special function of the hard shoulder, it is 
required to provide high-speed access for ambulances, 
police vehicles, engineering rescue vehicles and other 
vehicles under emergency conditions. Therefore, the 
application of HSR needs to take into account special 
traffic scenarios such as emergency vehicles driving 
into the regulated area.

Presently, extensive research has been conducted 
on the impact of HSR strategies on highways and the 
optimization of these strategies, forming a foundation 
for subsequent researches. The opening of the hard 
shoulder significantly affects various aspects of the 
highway, which can be summarized into three primary 
categories: efficiency, safety, and vehicle emissions. 
The implementation of HSR strategies increases the 
capacity for both local areas and the entire road 
section, thereby reducing highway congestion and 
enhancing operational efficiency. The dissipation of 
congestion also has a significant effect on highway 
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safety. Reducing the frequency of occasional accidents, 
the number of vehicle stops, and vehicle emissions are 
all benefits of implementing HSR strategies. These 
conclusions have been sequentially corroborated. 
Nevertheless, most existing studies predominantly 
analyze and optimize HSR strategy impacts on high
ways with a focus on a single objective, such as effi
ciency or safety. Simultaneously considering the 
optimization of efficiency, safety, and vehicle emis
sions represents a challenging yet highly valuable 
endeavor. Furthermore, a limited number of scholars 
have explored HSR strategy optimization methods. 
The optimal HSR strategy is determined by applying 
the enumeration method and simulation to analyze 
the implementation effect of different discretized HSR 
strategies. In addition, Li et al. (2019) employed the 
genetic algorithm to optimize the HSR strategies, 
using total travel time as the objective function, aimed 
at enhancing highway operational efficiency. Methods 
for optimizing HSR strategies in various scenarios 
continue to rely on conventional approaches, such as 
enumeration algorithms and genetic algorithms. 
Nowadays, real-time changes in freeway traffic flows 
were more rapid, and the traffic environment has 
become increasingly complex. Optimizing HSR strat
egies requires a more detailed consideration of the 
heterogeneity among various sections of the highway.

Furthermore, current research primarily concen
trates on the impact and optimization of HSR strat
egies, often overlooking the original function of hard 
shoulders. The most fundamental function of hard 
shoulders is to serve as a passage for special vehicles 
during emergencies. EVs are crucial components of 
emergency systems, requiring prompt and secure 
responses to various urgent incidents, including 
ambulances, fire trucks, and rescue vehicles. As the 
primary means of transportation for emergency 
response, ensuring their unimpeded passage and 
reducing response times contributes to an increase in 
rescue speed. Relevant studies indicate that the 
“golden hour” for rescuing trauma patients is within 
the first hour after an accident. The success rate of 
rescue is closely tied to response speed; the faster 
emergency vehicles arrive at the accident scene, the 
higher the likelihood of successful patient rescue. 
When emergency vehicles reach the accident site 
within 7 min, the success rate of rescue can reach 
94.8% (Newgard et al., 2010). If the arrival time is 
doubled, the rescue success rate drops to 75.3%. 
However, the implementation of HSR strategies often 
results in private vehicles occupying the hard shoul
der. When EVs enter the regulated area, they may 

encounter disruptions from these vehicles, leading to 
delays and serious damages.

To overcome the limitations of previous studies 
and address the optimization challenges of HSR strat
egies—particularly in scenarios where EVs enter the 
regulated area—this paper introduces a novel L- 
MADDPG-A� algorithm. The proposed approach is 
structured within a two-layer problem framework. 
The primary layer involves optimizing the HSR strat
egy, while the secondary layer focuses on the EV 
vehicle lane clearing issue. For the HSR strategy opti
mization, we present an innovative algorithm that 
integrates LSTM with MADDPG, effectively leveraging 
the time-series data extraction capabilities of the 
LSTM model. Additionally, the reward function 
within the MADDPG framework is designed to con
sider three critical performance metrics: safety, effi
ciency, and emissions. These objectives guide the 
training process, enabling the agent to learn an opti
mal control strategy for HSR deployment under 
dynamic traffic conditions. For the secondary problem 
of EV lane clearing, we transform the vehicle merging 
challenge into a graph-based path planning problem. 
We introduced an A� algorithm that employs heuris
tic algorithms to determine the optimal clearing solu
tion. Hence, the primary contributions of this paper 
are as follows: (1) Introduction of a two-tiered model 
framework for optimizing HSR strategies while con
sidering EVs entering the regulated area. (2) 
Development of an LSTM-MADDPG algorithm to 
optimize HSR strategies, considering the temporal fea
ture of traffic data and regional traffic flow heterogen
eity. (3) Formulation of the lane clearing problem 
when EVs enter the regulated area from a graph the
ory perspective, with the proposal of an improved A�
algorithm for lane clearing. (4) Taking into account 
the heterogeneity of highway traffic flows, construct 
practical simulation cases for problem-solving and 
algorithm evaluation across four different highway 
service level traffic flow scenarios.

The article is structured as follows; The problem 
formulation and model design are described in 
Section 2, the methodology is explained in Section 3, 
the experimental elements and design are described in 
Section 4, the analysis and discussion of findings are 
analyzed in Section 5, and the conclusion is summar
ized in Section 6.

2. Literature review

The following three sections provide a review of exist
ing research outcomes in three main themes: HSR 
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strategies, EV lane clearing methods, and reinforce
ment learning algorithms. The HSR strategy research 
section analyzes the current impact of HSR strategies 
on highways and the research outcomes of optimiza
tion methods. The EV lane clearing methods section 
reviews the various lane clearing approaches proposed 
by different scholars. The reinforcement learning algo
rithm section introduces the current development sta
tus of multi-agent reinforcement learning algorithms.

� HSR strategies

To alleviate frequent highway congestion and 
reduce accidents, implementing Hard Shoulder 
Running (HSR) strategies has proven to be an effect
ive approach. During periods of heavy traffic, HSR 
strategies can significantly increase highway capacity, 
reduce congestion, boost vehicle speeds, and minimize 
delays (Bhouri et al., 2017; Coffey & Park, 2018; 
Ghiasi et al., 2018; Li et al., 2017; Newgard et al., 
2010; Vadde et al., 2012; Yao et al., 2024). The imple
mentation of HSR strategies can alleviate congestion 
and improve travel efficiency not only during heavy 
traffic but also at specific highway bottlenecks, leading 
to reduction of travel times (Zhang et al., 2022; Zhi 
et al., 2024). Opening the hard shoulder at the right 
moment offers a distinct advantage, but it’s crucial to 
note that prolonged open doesn’t always improve traf
fic conditions (Cohen et al., 2010). The effects of 
implementing the HSR strategy are more noticeable 
during the time periods with high traffic pressure, 
particularly on weekends, leading to improvements in 
both travel time and its reliability (Ma et al., 2016). 
These findings emphasize to implement different HSR 
strategies for different traffic scenarios. Furthermore, 
it is worth noting that, apart from alleviating traffic 
congestion, the implementation of HSR holds the 
potential to enhance highway safety to a certain extent 
(Arora & Kattan, 2023; Chun & Fontaine, 2017; 
Kononov et al., 2012). The application of HSR strat
egies on Interstate 2015 (I-66) in northern Virginia 
resulted in a notable reduction of rear-end collisions 
by 31% (Waleczek & Geistefeldt, 2021). Aron et al. 
(2010) study of the implement HSR strategies on a 
segment of the French freeway (A4-A86) similarly 
demonstrated a decline in accident occurrence con
comitant with reduced road traffic density resulting 
from the opening of the hard shoulder. Utilizing a 
Bayesian modeling approach, a comprehensive ana
lysis clarified the impact of broader composite should
ers on highway safety. This analysis indicated a 
potential decrease of up to 61% in localized accidents 

and a 31% reduction in fatal crashes (Dutta et al., 
2019). These collisions often result from inadvertent 
causes, and the dynamic opening of the hard shoulder 
facilitates the rapid evacuation of congested traffic 
flows, thereby reducing the occurrence of such unin
tentional accidents (Cohen et al., 2010). In certain 
cases, by utilizing HSR strategies to alleviate down
stream traffic congestion, it is possible to improve the 
safety conditions upstream. This conclusion stems 
from Waleczek et al.’s (2021) comprehensive analysis 
of 13 years’ worth of accident data from seven seg
ments of German highways. Improvements in traffic 
flow conditions and increased highway safety make 
highway travel smoother, resulting in reduced vehicle 
occupancy time on the road (Abdel-Aty et al., 2024). 
During periods of congestion, vehicles frequently 
experience stop-and-go patterns, resulting in ineffi
cient fuel consumption. As travel times decrease, the 
cumulative emissions of pollutants from vehicles in 
localized areas also decrease, subsequently leading to 
reduced atmospheric pollution. Wilson et al. have dis
cussed the implementation of the hard shoulder strat
egies to alleviate traffic congestion, concurrently 
yielding ancillary benefits, including the decrease of 
carbon emissions and the reduction of environmental 
pollution (Zeng & Schrock, 2012). Notably, some 
studies suggest that implementation of HSR strategies 
exhibits the potential to reduce vehicle fuel consump
tion and emissions by up to 32% without necessitating 
road expansion. This result emphasizes the signifi
cance of implementing the HSR strategy and shows its 
economic viability and substantial improvement 
effects (Wilson, 2009). In the aforementioned study, 
the improvement effects of HSR strategies on the 
highway were analyzed from the perspectives of effi
ciency, safety, and vehicle emissions. Different HSR 
strategies yield different effects on the highway traffic 
condition. Consequently, numerous researchers have 
proposed their own research approaches to address 
the issue of formulating specific HSR strategies for 
different traffic flows. Yang et al. (2021) utilized K- 
Means clustering to categorize traffic conditions, sup
plemented by factor analysis and TOPSIS method for 
determining optimal conditions for opening hard 
shoulder. These initial researches only considered the 
two fundamental strategies, open and closed, to estab
lish the threshold for opening hard shoulder. 
Subsequently, some researchers have studied more 
complex traffic scenarios, utilizing methodologies such 
as Q-learning (Zhou et al., 2020), IBM CPLEX solver, 
and others to optimize HSR strategies. However, while 
the strategy has become more sophisticated, it often 
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focused on the entire roadway without considering 
localized traffic flow conditions. This mathematical 
formalization of the strategy defines the problem as 
an optimization challenge, making it an invaluable 
resource for future research endeavors. Li et al. (2019) 
defined the strategy as the arrangement of the open 
and closed states of different sub-sections of multiple 
temporal intervals, and utilizing genetic algorithms to 
find the optimal HSR strategy with the objective of 
minimizing travel time. This mathematical formaliza
tion of the strategy and the optimize method for HSR 
strategy provide a valuable reference for future 
research.

� EV lane clearing methods

The implementation of the HSR strategy yields 
numerous benefits for highways, but it also introduces 
certain challenges. Vehicles occupying the hard shoul
der during strategy implementation can disrupt 
approaching EVs which often perform time-sensitive 
tasks. Such disruptions frequently lead to delays and 
substantial losses. To address this issue effectively, the 
clearance of lane for EVs is necessary. This task shares 
similarities with the process of vehicle merging, where 
vehicles from the hard shoulder integrate into the pri
mary lanes within a designated segment area (Zhou 
et al., 2020). In the initial stages of this study, 
researchers primarily utilized traffic signals to control 
the merging process. For instance, Li et al. (2014) 
introduced an ALINEA control algorithm to control 
the merging process in the context of ramp metering. 
Advancements in emerging technologies have led to 
increasing levels of vehicle automation, enabling more 
efficient and safer merging operations through collab
orative vehicle control. The key of effective coopera
tive control for vehicle merging primarily lies on the 
determination of the merging order (Cao et al., 2021; 
Papageorgiou et al., 2008). There exist two approaches 
for resolving the issue of merging order: the rule- 
based method and the optimization-based method. 
Rule-based methodologies ascertain the sequence of 
vehicle merging by specific rules, which may include 
the first-in-first-out rule, the arrival time rule, the 
local gap optimization rule, and others. While these 
methods are straightforward to implement, they do 
not ensure the optimality of the merging solution. In 
contrast, optimization-based methods have the cap
ability to systematically search for the most optimal 
local or global merging order, resulting in a more pre
cise solution (Ding et al., 2020). Awal et al. (2013) 
proposed a recursive pruning algorithm with the 

optimization objective of total travel time to find 
the optimal sequence for merging a set of vehicles on 
the main road and ramps. In a similar way, 
Fukuyama (2020) proposed a decentralized control 
framework within the merging region and utilized 
dynamic game theory to optimize vehicle merging tra
jectories. They applied a zero-suppressed binary deci
sion diagram (ZDD) approach to solve this problem. 
Mu et al. (2021) formulated the merging problem as a 
mixed-integer linear programming problem and 
employed a heuristic algorithm to solve it. 
Experimental validation of their method confirmed its 
capability to meet performance expectations within a 
context of Connected and Autonomous Vehicle 
(CAV) traffic flow (Spatharis & Blekas, 2024).

� Reinforcement learning algorithms

The existing methods for optimizing HSR strategies 
are relatively conventional and struggle to adapt to 
the heterogeneous traffic flow states on highways. 
Employing a multi-agent reinforcement learning algo
rithm for regional control can effectively address the 
aforementioned issues. The multi-agent reinforcement 
learning algorithm is an extension of single-agent 
reinforcement learning, accommodating multiple con
trol entities. Early reinforcement learning (RL) mainly 
focused on tabular and approximate algorithms, suit
able for tasks with low-dimensional state and action 
spaces. To tackle more complex tasks with higher 
dimensional state or action spaces, methods with 
robust capabilities for high-dimensional data represen
tation and abstraction are required. Deep neural net
works are well-suited for this purpose. Deep learning, 
with its robust data representation capabilities, has 
transformed feature engineering from manual proc
esses to network-driven extraction, enhancing effi
ciency and accuracy while addressing the issue of 
exploding data dimensions. The combination of deep 
learning and reinforcement learning is referred to as 
deep reinforcement learning (Mnih, 2013). Deep Q 
networks (DQNs), one of the most classic integration 
methods, have gained substantial attention due to 
remarkable success in gaming applications, conse
quently leading to the development of various deep 
reinforcement learning algorithms (Van Hasselt et al., 
2016). Single-agent deep reinforcement learning algo
rithms such as Double Deep Q-Networks (DDQN), 
Asynchronous Advantage Actor-Critic (A3C), and 
Soft Actor-Critic (SAC) have been proposed and 
applied across diverse domains, encompassing robot 
control, video processing, text mining, and more 
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(Balmer et al., 2004; Haarnoja et al., 2018; Hou et al., 
2023; Kim et al., 2025; Low et al., 2024; Mnih, 2016). 
Nevertheless, in scenarios involving multiple control 
entities in a system, such as UAV formation problems, 
fleet cooperative navigation, multi-robot path plan
ning, and similar applications, single-agent reinforce
ment learning algorithms are no longer suitable. 
Consequently, multi-agent reinforcement learning 
algorithms have emerged to address these challenges. 
Multi-agent algorithms, in contrast to single-agent 
ones, are more intricate. Multiple agents not only 
interact with the environment but also communicate 
with each other (Huang et al., 2024). In recent years, 
the Multi-Agent Deep Deterministic Policy Gradient 
(MADDPG) algorithm proposed by Lowe et al. (2017) 
has become a research hotspot, widely applied in areas 
such as energy trading, regional traffic signal coordin
ation, multi-task resource allocation, and drone swarm 
coordination. Under the MADDPG algorithm frame
work, addressing the optimization problem of HSR 
strategies involves segmenting the control region into 
multiple sub-regions, each treated as an intelligent 
agent. Each agent independently makes control deci
sions while simultaneously sharing data with other 
agents to optimize its policy network. Traditional 
heuristic algorithms and Q-learning algorithms for 
control optimization often overlook the distinctiveness 
of controlled road sections. The MADDPG algorithm 
defines reward functions for agents, guiding their 
training through interactions with the environment, 
ultimately computing the optimal control strategy for 
each intelligent agent.

Based on the analysis of the existing researches and 
research problem, this paper proposed a multi-agent 
reinforcement learning algorithm for optimizing the 
implementation effect of HSR strategies in different 
traffic scenarios. Furthermore, we utilized the A�
algorithm to address the challenge of merging hard 
shoulder vehicles into the primary road lane, particu
larly during EVs enter the regulated area. Ultimately, 
experimental results conclusively demonstrate the 
effectiveness of the proposed methodology.

3. Problem formulation and model design

3.1. Statement of the problem

Assume that not all highway segments will implement 
the HSR strategy, nor will EVs consistently enter seg
ments where the HSR strategy is applied during all 
time periods. Based on this assumption, as illustrated 
in Figure 1, the problem is formulated as a two-level 
structure. The first level focuses on optimizing 

strategies for specific highway segments where the 
HSR strategy will be implemented, aiming to enhance 
overall traffic efficiency, safety, and emissions within 
the areas affected by the strategy. The second level 
addresses the process of lane clearing when EVs enter 
areas subject to the HSR strategy, ensuring that 
vehicles on the hard shoulder do not obstruct their 
passage.

At the first level, referred to as the major problem, 
the main objective is to manage and regulate the use 
of the hard shoulder based on real-time fluctuations 
in traffic flow. The solution process for this problem 
consists of five distinct steps: (1) real-time data collec
tion, (2) data processing and feature extraction, (3) 
HSR strategy definition and optimization, (4) strategy 
implementation and data feedback, and (5) strategy 
evaluation and adjustment. Initially, real-time traffic 
data is collected using highway detectors, capturing 
key metrics such as vehicle count, speed, and average 
travel time. The data is then cleaned and processed to 
extract relevant features, ensuring the quality of the 
data for subsequent analysis and optimization. 
Following this, the HSR strategy is mathematically 
formulated, and optimization algorithms are employed 
to search for the optimal strategy. The goal is to 
enhance traffic flow, passage efficiency, and other traf
fic indicators on the highway segments where the 
strategy is applied. The optimization goal is to 
enhance traffic flow, passage efficiency, and other key 
performance indicators on the highway segments 
where the strategy is implemented. The optimized 
strategy is then implemented by transmitting real-time 
strategy information to vehicles, with feedback data 
collected after implementation. Lastly, the effectiveness 
of the strategy is assessed by analyzing its impact on 
traffic flow, accident rates, and emissions. Based on 
these evaluation results, adjustments are made to 
refine the strategy for the next iteration.

When EVs approach or enter segments where the 
HSR strategy is active, it is crucial to ensure their 
smooth passage through the areas affected by the 
strategy. This concern forms the basis of the second 
level, referred to as the subproblem, which specifically 
addresses the lane-clearing process for EVs. This sub
problem is resolved through three key steps: (1) emer
gency vehicle data collection, (2) lane-clearing 
algorithm design, and (3) implementation and evalu
ation of clearing measures. First, real-time data on 
EVs is collected, including their location, speed, and 
acceleration, to enable accurate tracking. Building on 
this information, a lane-clearing algorithm is designed 
to clear vehicles obstructing the EVs’ movement, 
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thereby ensuring unobstructed passage. The lane- 
clearing measures are implemented, followed by an 
evaluation of their effectiveness. Once the EVs exit the 
controlled area, the subproblem transitions back to 
the major problem, resuming the iterative process to 
maintain efficient road management.

Due to the challenges associated with testing strat
egies in real-world conditions, a simulation platform 
has been developed using advanced simulation soft
ware. This platform enables data collection and strat
egy implementation within an interactive 
environment. It facilitates the simulation of the HSR 
strategy optimization process under varying traffic 
conditions, as well as the testing and evaluation of dif
ferent lane-clearing solutions. In the following sec
tions, we will provide a detailed overview of the 
strategy optimization framework, the iterative process, 
and the methods for implementing and evaluating the 
lane-clearing algorithm.

3.2. Strategic formulation

In the process of solving the major problem, it is 
necessary to define the HSR strategy with mathemat
ical form. To determine the open state of different 
road sections at different time intervals, the design of 
the HSR strategy needs to be considered from the 
aspects of control distance and time. As depicted in 
Figure 2, this study employs a temporal and spatial 
discretization approach to formulate the highway HSR 
strategies. The total length of the highway segment in 
the figure is denoted as L; and this segment is subdi
vided into multiple discrete sub-segments, labeled as 
fl1, l2, l3, :::, lng: Each of these sub-segments is the 
smallest control unit subject to the HSR strategy, with 
two potential states either open or close. When 

sub-segment li is in the open state, it facilitates the 
passage of vehicles from the primary lane, allowing 
them to transition into the sub-segment. Conversely, 
if the sub-segment is closed, it restricts access for 
vehicles within the primary lane or those traveling 
straight from the preceding sub-segment. Let each 
sub-segment li correspond to a variable ci; which is a 
0–1 categorical variable. When ci ¼ 1; it means sub- 
segment li is open; when ci ¼ 0; it means sub-segment 
li is closed. Then the mathematical representation of 
the strategy for the control segment L is: 
½c1, c2, c3, :::, cn�: Employing a similar approach for 
temporal discretization, we define the total duration 
of the control segment as T: Each time interval, 
denoted as Ti; constitutes a control cycle for the 
modification of the open and closed status of individ
ual sub-segments. The strategy of each control cycle is 
expressed as: CTi ¼ ½c1 ¼ 0, c2 ¼ 1, c3 ¼ 0, :::, cn ¼ 1�:
The HSR strategy is then composed of the 
combination of strategies from all cycles: 
½CT1, CT2, CT3, :::, CTN �:

3.3. Modeling the problem

Figure 3 provides a schematic representation of the 
major problem and sub-problem. To enable the trans
mission of the HSR strategy information, a crucial 
assumption is made, wherein a signal bar is positioned 
at each sub-segment li: These signal bars have dual- 
color indicators: a red light signifies that the segment 
is closed, while a green light indicates that it is access
ible for entry and exit. These signal bars are designed 
to facilitate bidirectional communication with con
nected vehicles, transmitting state information of seg
ment. Connected vehicles are equipped with sensors 
to perceive the positions of surrounding vehicles, as 

Figure 1. Framework of two-layer problems.
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well as to gather data like their speeds, accelerations, 
the status of hard shoulder segment, and the next 
open decision time. Moreover, the highway lanes also 
can collect different information by equipping various 
detection devices, including the number of vehicles 
within each roadway, waiting times for vehicles, aver
age speeds of roadways, average travel times, roadway 
occupancy rates, and other data (Azimjonov & 
€Ozmen, 2021).

In the major problem, the EVs did not enter the 
regulated road section. As illustrated in Figure 3, 
within a control temporal interval denoted as Ti; the 
sub-segment opening strategy is defined as follows: 
½c1 ¼ 0, c2 ¼ 1, c3 ¼ 1, c4 ¼ 1, c5 ¼ 0�: During this tem
poral interval, the signal indicators for sub-segments 
l2, l3, and l4 illuminate in green, transmitting instant
aneous signals to the vehicles driving on the lanes. A 
connected vehicle in the main lane receives this signal, 
or the driver observes the color of the signal bars, 
allowing for a lane change to access these three sub- 

segments. For sub-segments l1 and l5; the signal bar 
displays as red, permitting only EVs to access them. 
Once an EV enters, the situation transitions from the 
major problem to the sub-problem. In this context, 
ensuring unimpeded EV travel is paramount, which 
necessitates the clearance of vehicles on the hard 
shoulder. As depicted in Figure 4, utilizing a grid- 
based approach, all lane vehicles are divided into cells. 
Each vehicle corresponds to a cell, forming an M � N 
vehicle arrangement matrix. Vehicle behaviors, includ
ing lane changes and straight-line driving, are trans
formed into movement between cells. The movement 
of each vehicle to an adjacent cell leads to a new 
arrangement. The hard shoulder lane corresponds to 
one of the columns in the matrix, and the task at 
hand involves the transfer of all vehicles from this col
umn to other cells. As in the example in Figure 4, the 
black dashed box indicates the column corresponding 
to the hard shoulder lane. The clearing task is com
pleted by moving vehicles No. 1 and No. 2 to the left 

Figure 2. Strategy of HSR operation.

Figure 3. Framework for problem switching.
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two columns. In this scenario, an issue arises wherein 
vehicle No. 2 is obstructed by the presence of vehicle 
No. 3. Consequently, it becomes imperative to design 
an effective algorithm with the purpose of determine 
the optimal resolution for this clearing problem.

4. Methodology

4.1. Multi-agent reinforcement learning

Reinforcement learning (RL) is an important branch 
of machine learning. It is based on a trial-and-error 
learning mechanism, where an optimal policy is 
trained by agents interacting with its environment to 
maximize rewards. Deep reinforcement learning 
(DRL) combines reinforcement learning with deep 
learning as a new approach to solve complex control 
problems. When multiple control objects are involved 
in the environment, multi-intelligence deep reinforce
ment learning emerges. Specifically, multi-agent 
reinforcement learning refers to a method where mul
tiple agents, in the context of sequential decision- 
making problems, interact with the environment and 
learn to achieve an optimal equilibrium state for the 
task under predefined reward rules. In general, we 
model the problem of multi-agent reinforcement 
learning as a partially observable Markov decision 
problem (Busoniu et al., 2008). The decision-making 
process, involving N agents, is described by the tuple 
ðN, St , At, P, Stþ1, Rt , cÞ: Here, St ¼ fO1 �O2 � � � � �

ONg represents the environmental information data 
observed by all agents at time t; denoting the current 
state. At ¼ fa1 � a2 � � � � � aNg denotes the joint 
action taken by all the agents under their existing pol
icy, where each action ai belongs to the action space 
ðai 2 XÞ: The state transition function, denoted as P;
describes the probability of transitioning from the cur
rent state to the next state. Stþ1 represents the state at 
the next time step. Rt ¼ r1, r2, :::, rNf g are the rewards 
received by each agent during the current state transi
tion. The discount factor, c 2 ½0, 1�; is used to calcu
late the expected cumulative reward. At time t; each 

agent Ni selects an action ai based on their individual 
policy function pi and forms a joint action At which 
is subsequently executed. Then, the state of the envi
ronment is transformed to Stþ1; and all agents receive 
corresponding rewards Rt: Typically, at a certain 
moment T; the interaction between agents and the 
environment concludes when the tasks of all agents 
are completed or the reward criteria are met. The pri
mary objective of multi-agent reinforcement learning 
is to determine a set of optimal policies, 
p1, p2, :::, pNf g; that maximize the expected cumula

tive discounted reward of all agent: maxE
PT

t¼0 ctRt�:

h

4.2. MADDPG algorithm

In a multi-agent system, different relationships exist 
between agents, often determined by the designed 
objectives. Depending on the specific optimization 
objectives, relationships are broadly classified into 
three primary categories: cooperation, competition, 
and mixed tasks. Cooperation is particularly applicable 
in practical production scenarios. Notably, the Multi- 
Agent Deep-Deterministic Policy Gradient Algorithm 
(MADDPG) has emerged as an efficient multi-agent 
reinforcement learning algorithm for ‘cooperative- 
competitive’ mixed tasks. As one of the most popular 
multi-agent reinforcement learning algorithms, it has 
been widely applied across various domains 
(Gronauer & Diepold, 2022). This algorithm extends 
from the single-agent reinforcement learning algo
rithm, DDPG (Deep Deterministic Policy Gradient), 
employing the well-known Actor-Critic (AC) frame
work. The DDPG algorithm can deal with the task of 
continuous action space, which mainly consists of two 
critical networks, an Actor network, and a Critic net
work. The Actor network is responsible for receiving 
state information and outputting corresponding 
actions, representing the agent’s policy. The Critic 
network models the state value Q-function to 
evaluate policies and perform parameter updates. Both 
the Actor and Critic networks encompass two 

Figure 4. Lane clearing process in HSR.
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sub-networks: one designated as the ‘current network’ 
and the other as the ‘target network’, with identical 
network architectures. The MADDPG algorithm uti
lizes the foundation of the DDPG algorithm to 
advance it and extend its applicability to multi-agent 
systems. It operates within a framework of centralized 
training and decentralized execution. Specifically, it 
conducts centralized training by training a global 
critic network Qgobal with inputs from all agents to 
update the policy networks pi for each agent. The cur
rent Actor network, corresponding to the agent’s pol
icy, receives the environmental data observed by the 
agent, calculates the distribution of the agent’s actions, 
and selects the actions through the ‘e − greedy’ meth
odology. Subsequently, agents execute these actions 
and receive environmental rewards, while the Critic 
network scores actions based on both actions and 
environmental states. The Actor network updates the 
network parameters based on the environmental 
rewards and scores, enabling the agents to select 
actions that result in higher cumulative rewards. 
This iterative process continues until parameter 
updates are complete, yielding the optimal policy. 
Assuming ϑi represent the current Actor network 
pi parameters and the Critic network Q as hi:

Then the set of all Actor networks is P ¼

fp1ðs, ϑ1Þ, p2ðs, ϑ2Þ � � � pN−1ðs, ϑN−1Þ, pNðs, ϑNÞg for N 
agents. where s ¼ fo1 � o2 � � � � � oNg denotes the 
environmental data acquired by all agents. The 
target Actor network, which shares the same 
structure as the current Actor network, denoted as 
P0 ¼ fp01ðs, ϑ01Þ, p02ðs, ϑ02Þ � � � p0N−1ðs, ϑ0N−1Þ, p0Nðs, ϑ0NÞg:
The Critic network of all agents can be represented 
as: Q ¼ fQ1 s, a, h1ð Þ, Q2 s, a, h2ð Þ � � �QN−1 s, a, hN−1ð Þ, 
QN s, a, hNð Þg: The target Critic network is: Q0 ¼
fQ1

0 s, a, h1
0ð Þ, Q2

0 s, a, h2
0ð Þ � � �QN−1

0 s, a, hN−1
0ð Þ, QN

0ðs, a, 
hN
0Þg; where a ¼ fa1 � a2 � � � � � aNg denotes the 

joint action of agents. The update formula for the 
Critic network is as follows:

LOSS hið Þ ¼ Es, a, r, s0 Qp
i s, a, hið Þ − yÞ2

h i

, y

¼ ri þ cQp0

i s0, a0, hið Þja0k¼p0k okð Þ
(1) 

Where c is the discount factor, ri is the reward of 
the agent, and p0 denotes the target Critic network. 
According to the definition of cumulative discount 
reward, for agent i: J ϑið Þ ¼ E½Ri�: Its gradient can be 
written as:

rϑi J pϑið Þ ¼ Eðs, aÞ�D½rϑipi aijsið Þrai Q
p
i 

s, a1, a2 � � � aNð Þjai¼pϑi sið Þ
� (2) 

Where D represents an empirical data replay pool 
and is used for network training by sampling data. 
It is composed of tuples ðst , at

1, at
2, :::, at

N−1, 
at

N , r1
t , r2

t , :::, rN
t , stþ1Þ: For the target Actor 

network and the target Critic network the network 
parameters are updated by using the soft update 
mechanism:

ϑQi
0

¼ 1 − @ð ÞϑQi þ @ϑQi
0

(3) 

hpi
0

¼ 1 − @ð Þhpi þ @hpi
0

(4) 

Where ϑQi
0 , hpi

0

are the parameters of the target 
Actor, target Critic network respectively. @ is the 
update step size, which is used to control the speed of 
updating the network parameters.

4.3. LSTM algorithm

Long Short-Term Memory (LSTM) is a type of recur
rent neural network that evolved from the traditional 
Recurrent Neural Network (RNN) (Hochreiter, 1997). 
LSTM effectively addresses the limitations of tradi
tional RNNs, enabling the processing of long time 
sequences, feature extraction, and resolving long-term 
dependencies. As shown in Figure 5, its network 
structure is built on a chain of repeating neural units, 
with each unit having a simple architecture, including 
an input layer, a hidden layer, and an output layer 
(Xu et al., 2022). In the hidden layer, it replaces the 
basic RNN units with memory cells that consist of 
three crucial gates: the input gate, forget gate, and 
output gate, along with a memory state. Each gate 
comprises activation functions and element-wise 
multiplication functions. These gates are responsible 
for retaining useful information from the current 
sequence, selectively forgetting previous data, and 
transferring data information. The memory state is 
responsible for retaining data states, selectively 
transmitting information, and organizing all memory 

Figure 5. Structure of long short-term memory (LSTM).
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cells. As illustrated in Figure 5, ft; it; and ot are the 
output signals from the three gates, while ∁t repre
sents the current memory state and ∁t−1 signifies the 
state information that needs to be retained from 
the previous time step. Notably, xt corresponds to the 
input data at the current time step, ht−1 refers to the 
output information from the hidden layer at the pre
vious time step, and ht denotes the hidden layer out
put information (Yan et al., 2021). The formula for its 
calculation is as follows:

Forget : ft ¼ r Wf ∙ xt , ht−1½ � þ bf
� �

(5) 

Input : it ¼ rðWi∙ xt , ht−1½ � þ biÞ (6) 

Output : ot ¼ rðWo∙ xt, ht−1½ � þ boÞ (7) 

Candidate Data : ∁̂t ¼ tanhðW∁∙ xt, ht−1½ � þ b∁Þ (8) 

Record State : ∁t ¼ ft �∁t−1 þ it � ∁̂t (9) 

Hidden Layer : ht ¼ ot �tanhð∁tÞ (10) 

In the equation, r denotes the sigmoid function; 
W, b denote the weight matrix and offset, respectively; 
tanh denotes the hyperbolic tangent function; and �

 

is an elemental product operator.

4.4. Optimization algorithm: LSTM-MADDPG 
algorithm

Highway traffic flow data exhibit characteristics of 
substantial dimensions and extended time series. The 
process of feature extraction from traffic flow 
sequence data serves as a fundamental procedure in 
data processing. In this study, traffic flow data col
lected through detector is used to characterize the 
traffic state of a highway segment over a temporal 
interval, which serves as the basis for formulating 
HSR strategies. Notably, LSTM networks possess 
robust capabilities in processing sequential data, 
effectively extracting features from extended time 
sequences. As depicted in Figure 6, we incorporate 
LSTM networks into the MADDPG algorithm as a 
module for feature extraction from environmental 
observation data. This combination significantly 
improves the handling of long-term observation data 
from various highway segments. Conventional 
MADDPG algorithms typically lack a temporal 
dimension in their input data which just provide one- 
dimensional or multi-dimensional representations of 
environmental information. Since the traffic flow data 
have a temporal dimension characteristic, extracting 
the features of the data through LSTM network can 
enhance the effectiveness of the MADDPG algorithm. 
Furthermore, to enhance the effectiveness of the 

Figure 6. Architectural framework of the LSTM-MADDPG algorithm.
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training process for the LSTM-MADDPG algorithm, a 
series of measures is instituted.

� Prioritized experience replay (PER) (Schaul et al., 
2015)

within the training process for conventional reinforce
ment learning algorithms, the utilization of experience 
replay is a common practice. To enhance the effi
ciency of learning from training data in the 
MADDPG algorithm, a prioritized experience replay 
approach is adopted. This methodology, in conjunc
tion with the loss function derived from the Critic 
network, computes a prioritization basis denoted as Li 
for each data sample. The prioritization basis Li is 
calculated according to the following formula: 
Li ¼ jQp

i s, a, hið Þ − yij:The priority P ið Þ of data sample 
i is given by the following two equations:

Pi ¼ ð Lij j þ T Þ
a (11) 

P ið Þ ¼
Pi

P
kPk

(12) 

where a is a hyperparameter between 0 and 1 used 
to control the preference of the empirical priority 
in the sampling process. T is a parameter greater 
than 0:

� Important sample (IS)

In the prioritized experience replay algorithm, 
individual samples are assigned unique priorities 
which determine the sampling frequency for each 
sample. Samples with higher priorities are selected 
more frequently, while samples with lower priorities 
have a minimal or zero sampling frequency. Such an 
approach alters the original distribution of training 
samples and can lead to unexpected convergence of 
network parameters, resulting in bias. To address this 
bias issue, we employ the technique of importance 
sampling. For each sample’s priority, we calculate its 
importance sampling weight, denoted as Wi:

Through priority-based sampling, we collect a set of 
experience samples along with their corresponding 
sample weights, Wi: Subsequently, based on these 
sample weights and the network’s loss function, we 
calculate the sample losses and perform a weighted 
summation. Specifically, we multiply the loss value 
computed for each sample by its corresponding 
weight and then sum these values, updating the net
work parameter. The formula for this weighting is 
shown as follows:

Wi ¼
ðP ið Þ∙NÞ-b

.

maxðWjÞ
(13) 

� Credit Assignment (CA)

In a multi-agent system, evaluating each agent’s 
contribution to the overall performance through credit 
assignment helps prevent the occurrence of lazy 
agents. The MADDPG algorithm designs independent 
reward function for each agent to mitigate bias in 
assessing agent contributions. Additionally, each agent 
maintains cooperative relationships with other agents 
through a global Critic network.

4.5. Improved A� clearing algorithm

The A� algorithm is a heuristic search algorithm 
widely applied in graph search problems like path plan
ning (Hart et al., 1968; Seet et al., 2004). It combines 
the greedy strategy from heuristic methods with the 
breadth-first search algorithm from shortest path search 
algorithms. Heuristic methods in which past empirical 
information is rationally utilized to improve the speed 
of the algorithm, often can only provide approximate 
optimal solutions. On the other hand, breadth-first 
search is a precise algorithm that disregards computa
tion time, theoretically capable of finding the shortest 
path for a given path planning problem. The A� algo
rithm combine these two algorithms with their 
strengths. Its core lies in the design of two essential 
functions: one that estimates the cost of the best path 
from the current search node to the target node and 
another that calculates the total cost of the paths 
searched so far. The algorithm evaluates nodes in the 
graph by computing the sum of these two functions for 
each node, thereby determining the direction of each 
search node and finding the shortest cost path.

As illustrated in Figure 7, for the purpose of EV 
lane clearing, we discretize the area spatially where 
vehicles travel. Every vehicle is mapped to a grid cell in 
this spatial discretization system. Vehicle movement is 
thus described as transitions between these grid cells. 
Initially, the vehicle’s position is represented as a 0–1 
matrix, which serves as the initial node. After complet
ing EV lane clearing, the arrangement matrix of vehicle 
positions becomes the target node. Vehicle position 
matrices are altered by moving left or right within the 
grid cells, with each arrangement matrix representing a 
node. Different movements of various vehicles from 
the initial node generate different nodes, interconnected 
to form a graph. Multiple paths emerge between the 
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initial and target nodes, and the shortest path search 
provides the optimal lane clearing solution. 
Consequently, the original problem of lane clearing is 
transformed into a graph shortest path search problem.

This study employs the improved A� algorithm as 
the solution methodology for finding the shortest 
path. To reduce the computational complexity of the 
search process, it is assumed that only one vehicle 
moves at a time in each step. Since the existence of 
multiple potential arrangements satisfying the requis
ite conditions in the context of EV lane clearing, the 
A� algorithm is enhanced by redefining the termin
ation criteria. Instead of terminating at a specific tar
get node as before, the new termination condition 
essentially comprises a set of many nodes. In the EV 
lane clearing problem, the termination state is defined 
as the condition where all vehicles on the EV lane 
within a specified area have been completely cleared 
(Li et al., 2022). Thus, the improved A� algorithm, 
when combined with the original algorithm steps, is 
shown in Table 1.

5. Experimental elements and design

5.1. Design of experimental factors

5.1.1. Agent
In accordance with Figure 8, this study combines con
secutive adjacent road segments into a unified entity, 

which is designated as an agent (AGENTi). Assuming 
that each agent controls two consecutive road seg
ments, denoted as l1 and l2; managing their open and 
closed states while collecting data information. The 
entire set of road segments is divided into N agents, 
with each agent controlling an equal number of 
segments.

5.1.2. Action space
Each agent controls a combination of consecutive 
road segments, and its action space consists of the 
various combinations of open and closed states for 
these segments. As Figure 8, each agent controls two 
sub-segments (such as: l1, l2), then the action space will 
be: f 0, 0ð Þ, 0, 1ð Þ, 1, 0ð Þ, 1, 1ð Þg; and the corresponding 
control variables take the values of: f ci ¼ 0,ð ciþ1 ¼

0Þ, ci ¼ 0, ciþ1 ¼ 1ð Þ, ci ¼ 1, ciþ1 ¼ 0ð Þ, ci ¼ 1, ciþ1 ¼ð

1Þg: Since each agent controls the same number of 
sub-segments, each agent has the same action space. 
The action space for each agent changes with the 
number of road segments it controls.

5.1.3. State
Agents gather information from the environment to 
determine their control strategies. Information 
observed by agents consists of two parts: autonomous 
agent-specific observations and global observations for 
the entire regulated segment. The autonomous 

Figure 7. Design of the a� algorithm framework.

Table 1. The improved a� algorithm.

Improved A� Algorithm

1. Define s as the unit cost of each vehicular movement
2. The initial node, denoted as S; and the terminal state, represented as Τerminate
3. Design the function G nð Þ: represent the cost of the path from the initial node S to node n
4. Design the admissible heuristic function H nð Þ: estimate the cost of reaching the target state Τerminate from node n
5. Design the node evaluation function F nð Þ: serves to assess the overall cost of a given node, F nð Þ ¼ G nð Þ þ H nð Þ
6. Initialize the open list (Olist) and add the initial node S to the list. Initialize the mark list (Mlist)
7. Calculate the F function values for all nodes in the open list and select the node with the minimum value, denoted as O
8. If the node O belongs to the target state Τerminate; the process concludes. If it does not, node O is added to Mlist; and its adjacent nodes are placed 

into Olist; and the process repeats at step 7.
9. After the termination of the algorithm, the trajectory of the vehicle will be determined by a path backtracking process.
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observation information for each agent is denoted as 
sagent i ¼ ½c, w, v, tt, occ�; where c represents the total 
number of vehicles traveling on the roadway, w indi
cates the waiting time of the roadway, v represents the 
average speed of vehicles on the managed roadway, tt 
denotes the average travel time of vehicles on the 
roadway, and occ indicates the occupancy rate of the 
roadway. The global observation information is repre
sented as senvironment ¼ ½C, W, V�; where C denotes the 
total number of vehicles in the global network, W is 
the global waiting time, and V represents global traffic 
data. Each agent’s observation data is represented as 
Si ¼ ½sagenti , senvironment�; and the overall network state 
information can be expressed using the following for
mula: S ¼ ½S1, S2, :::, SN−1, SN �:

5.1.4. Reward function
To improve highway traffic operation through the 
implementation of HSR, this study designs reward 
functions from three perspectives: efficiency, safety, 
and emissions. From an efficiency standpoint, the 
total travel time of vehicles is considered as the effi
ciency reward function.

ri
eff ¼ log10ðc

i
total travel timeÞ (14) 

ci
total travel time ¼

XT

t¼0
ci

t (15) 

where ci
total travel time denotes the total travel time of 

the i-th agent during a period of T:
From a security perspective, the safety reward func

tion is designed by incorporating two safety indica
tors: Time Exposed Time-to-Collision (TET) and 
Time Integrated Time-to-Collision (TIT). TET repre
sents the total time vehicles spend in a risky driving 
state, where vehicles are considered in a risky state 

when their Time-to-Collision (TTC) falls below a 
threshold, typically around 2 s (Li et al., 2022). On the 
other hand, TIT represents the integral of the vehicle’s 
collision-time curve, a metric utilized for the compre
hensive assessment of vehicular safety. The indicator 
of safety combing TIT and TET is shown as follows:

ri
safe ¼ a � log10 titið Þ þ b � log10ðtetiÞ (16) 

To reduce vehicle emissions on the highway, an 
emission reward function is designed based on the emis
sions of three gases: carbon monoxide (CO), carbon 
dioxide (CO2), and nitrogen oxide (NO). Herein, ci

CO 
represents the CO emissions of the i-th agent, ci

CO2 

denotes the CO2 emissions produced by the i-th agent, 
and ci

NO is the NO emissions generated by the i-th agent.

ri
em ¼ j � log10 ci

CO
� �

þ l � log10ðc
i
COOÞ þ c � log10ðc

i
NOÞ

(17) 

The reward function r for the total number of all 
agents is designed as follows:

r ¼
XN

i¼1
q � ri

eff þ r � ri
safe þ s � ri

em (18) 

5.2. Design of experimental simulation

To validate the effectiveness of the proposed method, 
SUMO simulation software is employed for case ana
lysis. As illustrated in Figure 9, a simulation segment 
model is established for a 6.2 km highway section 
between “Xingcun Interchange” and “Ganggou Hub 
Interchange” in Jinan city, Shandong province. This 
research segment is divided into 16 sub-sections, and 
the length of each sub-segment ranges from 300 to 

Figure 8. Design of individual components in agents.
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400 meters. The width of the hard shoulder is 3.5 
meters, while the main lane road width is 3.75 meters.

To investigate the adaptability of the proposed 
methodology under different traffic flow conditions, 
traffic flow simulation data is categorized into four lev
els based on the service levels of the highway. Highway 
service levels are generally categorized into four types, 
corresponding to free flow, light congestion, heavy con
gestion, and severe congestion. Under different service 
levels, the proposed method is applied to optimize the 
HSR strategy to achieve maximum control benefits.

In accordance with the standards in highway ser
vice level criteria of China, the traffic flow data for 
these four service levels are defined as follows: 1400 
vehicles per hour, 3000 vehicles per hour, 3750 
vehicles per hour, and 4300 vehicles per hour. 
Furthermore, different vehicle types are also consid
ered in SUMO simulation using actual traffic flow 
data collected in Jinan City. It contains three vehicle 
types: private, delivery, and trucks, which correspond 
to small, medium, and large vehicles, respectively. The 
ratio of these three categories of vehicles account for 
75%, 12.5%, and 12.5%. Considering driver physio
logical response characteristics, the Widemann 99 and 
LC2013 models are selected to describe vehicle follow
ing and lane-changing behavior in SUMO simulations.

6. Analysis and discussion of findings

6.1. Results of training

Figure 10 illustrates the convergence results of the 
reward function in response to the training of the L- 

MADDPG algorithm under four service levels. In 
each level, the L-MADDPG algorithm, the MADDPG 
algorithm, no open (ZEROS), and all open (ALL) 
were tested as four distinct HSR control strategies. In 
Figure 10(a), the purple curve represents the conver
gence results achieved by the L-MADDPG algorithm, 
which exhibits higher reward convergence compared 
to the ZEROS strategy. For the second and third ser
vice levels, the L-MADDPG algorithm demonstrates 
higher convergence rewards compared to the 
MADDPG baseline algorithm and ZEROS, indicating 
that L-MADDPG becomes more effective in highway 
performance after congestion occurs. However, at the 
fourth service level, the difference in rewards among 
the four strategies become less pronounced. This find
ing suggests that the influence of adjusting the HSR 
strategy on highway traffic flow is constrained during 
periods of severe congestion. From the four graphs in 
Figure 10, it is evident that the strategy computed 
using the L-MADDPG algorithm consistently yield 
higher reward values compared to the ZEROS 
strategy.

6.2. Comparative analysis of various metrics

To further assess the impact of various algorithms on 
highway operation, this study conducted comparing 
tests of the L-MADDPG, MADDPG, ZEROS, and 
ALL methods across three aspects: efficiency, safety, 
and emissions. Regarding efficiency, the Total Travel 
Time was selected as a comparative metric. For safety 
evaluation, a composite safety indicator consisting of 

Figure 9. Simulation section.
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TIT and TET was utilized to assess the safety level of 
highway over a specified period (Wu et al., 2020). In 
term of emissions, three major gases—CO, CO2, and 
NO—were selected as crucial measures to assess the 
level of environmental emissions on the highway. 
Under the four service level conditions, each strategy 
was tested ten times, and the averages were taken as 
the final results to enhance the validity of the test 
outcomes.

6.2.1. Efficiency metrics
Figure 11 presents test results for total travel time 
across the four methods. Total travel time is a signifi
cant measure that reflects the duration during which 
highway lanes are occupied by vehicles, with shorter 
times indicating higher highway operational efficiency. 
It is evident that under all four service level condi
tions, the L-MADDPG algorithm consistently 

outperforms the other three strategies, highlighting 
the significant effectiveness of the proposed method in 
enhancing highway efficiency. Specifically, at the both 
second and thrid service level, the L-MADDPG algo
rithm achieves a reduction in total travel time of high
way vehicle by 11.4 and 7.6 h, respectively, in 
comparison to the ZEROS strategy. From the first to 
the fourth service level, as vehicle density increases 
and congestion intensifies, the optimization space for 
vehicle travel time decreases.

6.2.2. Safety metrics
Figure 12 presents results of two safety indicators. The 
TIT value calculates the cumulative time during which 
vehicles on the highway are in a hazardous state, 
effectively reflecting the safety of highway traffic. 
From the figure, it is evident that as the service level 
improves, the cumulative duration of vehicles in 

Figure 10. Training results of the algorithms.
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hazardous driving situations significantly increases 
with the higher volume on highway. This observation 
suggests that an increase in vehicle density and the 
time vehicles spend in hazardous driving conditions 
may lead to a higher frequency of accidents. 
Comparatively, during the implementation of the HSR 
strategy demonstrates, a substantial reduction in TIT 
in contrast to the ZEROS strategy can be observed, 
resulting in an obvious improvement of safety. 
Notably, at service level 4, the HSR strategy devised 
by the L-MADDPG algorithm leads to a significant 
26.1% reduction in the TIT for all vehicles. While TIT 
primarily focuses on the duration of vehicles in haz
ardous driving conditions, the TET value reflects the 
frequency of highway vehicles below a certain TTC 

threshold. The comparison of the two highway safety 
indicators, TIT and TET, reveals that the L-MADDPG 
algorithm effectively reduces the traffic risk at 
different service levels, ensuring smooth traffic 
operations.

6.2.3. Emission metrics
Figure 13 presents a comparison of the emissions of 
three gases: CO, CO2, and NO. CO and NO are 
harmful gases, and their excessive emissions exacer
bate environmental pollution, posing significant health 
risks. CO2, as a greenhouse gas, contributes to rising 
atmospheric carbon dioxide levels, leading to phenom
ena like the greenhouse effect and global climate 
change. As traffic volumes increases, emissions from 
vehicles also grow. The implementation of HSR strat
egy on highways facilitates faster vehicle exit, resulting 
in reducing vehicular emissions. The application of 
the L-MADDPG algorithm to determine HSR strat
egies for different service levels has different impacts 
on vehicle emissions. At the first service level, com
pared to the ZEROS strategy, the implementation of 
the HSR strategy through L-MADDPG algorithm 
results in a significant reduction of CO emissions by 
3625.35 Kg, CO2 emissions by 461787.71 Kg, and NO 
emissions by 2159.68 Kg, effectively reducing pollu
tion. At service level 2, the reduction in CO emissions 
is even more obvious, with a decrease of 
599107.08 Kg. Notably, at the fourth service level, the 
NO emissions of L-MADDPG algorithm are lowered 
by 2440.63 Kg compared with the ZEROS strategy, 
demonstrating effectiveness of the L-MADDPG algo
rithm. Experimental findings demonstrate that opti
mizing hard shoulder strategies through the Figure 11. Comparison of efficiency across various algorithms.

Figure 12. Comparison of safety across various algorithms.
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L-MADDPG algorithm leads to a obvious reduction 
in emissions of three types of pollutants.

6.3. Emergency vehicle performance metrics

Implementation and optimization through the HSR 
strategy yields improvement for highway efficiency. 
Nevertheless, the hard shoulder, serving as a pathway 
to ensure smooth EVs travel on the highway, should 
consider its original function. Focusing on this, this 
study introduces an improved A� algorithm for clear
ing the hard shoulder lane to ensure access for EVs 
entering the regulated area. As in Figure 14, five strat
egies, ZEROS, ALL, ALL-A� algorithm, L-MADDPG 
algorithm and L-MADDPG-A� algorithm, are tested 
under four service level introduced before. Algorithm 
effectiveness is evaluated through the analysis of two 
key metrics related to EV performance: vehicle travel 
time and the braking times of EVs. In Figure 14(a), a 

comparison of EV vehicle travel times revealed a con
sistent reduction across all four service level condi
tions when using the A� algorithm for lane clearing. 
Notably, at service level 4, the L-MADDPG-A� algo
rithm reduced EV travel time by 18.1% compared to 
the ALL strategy. Both stopping and slowing down of 
vehicles significantly affect normal vehicle operation, 
and this study statistically compared the total stops or 
slowdowns of EVs during the experiment. In 
Figure 14(b), it was observed that the lane clearing 
through the improved A� algorithm results in a 
marked reduction in braking times of EVs. At the 
third service level, the L-MADDPG-A� algorithm 
reduced the braking times by 451.6%, thus greatly 
enhancing the smoothness of EVs operation. It is 
important to note that each optimal lane clearing 
solution incurs a certain clearing cost using the 
improved A� algorithm to clear lane. A larger clear
ance cost implies a greater number of vehicles that 

Figure 13. Comparison of emission across various algorithms.
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need to be cleared. A comparison was made between 
the ALL-A� algorithm and the L-MADDPG-A� algo
rithm in terms of the total lane clearing cost for the 
entire EV travel process under four service level. The 
results show that as traffic volume increases and more 
vehicles transition from the main road to the hard 
shoulder lane, lane clearing becomes more challeng
ing. Figure 14(c) illustrates that the ALL-A� algorithm 
incurs a higher total cost in all four service level con
ditions compared to the L-MADDPG algorithm, 
implying that the L-MADDPG-A� algorithm needs 
the clearance of fewer vehicles. This further demon
strates that the optimal HSR strategy obtained through 
the L-MADDPG-A� algorithm can reduce the likeli
hood of EV vehicles being disrupted by vehicles on 
the main road. In summary, the comparison of mul
tiple indicators reveals the necessity of using the A�
algorithm for hard shoulder lane clearing, which has 

significant implications for ensuring the smooth travel 
of EV vehicles.

6.4. Comparison result on the entire road segment

To investigate how the traffic changes on different 
lanes after EVs enter the regulated area, we selected 
lane average speeds for analysis. As shown in 
Figure 15, the speed variation of two main lanes and 
one hard shoulder lane was displayed under four ser
vice level. In Figure 15(a), at lower service levels with 
lower traffic volume, the various strategies resulted in 
similar average vehicle speeds. However, with increas
ing traffic volume, the lane average speed decreased, 
particularly under the ZEROS strategy. On the other 
hand, the ALL strategy enables smoother and faster 
vehicle travel, as the hard shoulder helps alleviate part 
of traffic burden. By optimizing the strategy through 

Figure 14. Comparison of EV performance across various algorithms.
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the L-MADDPG-A� algorithm to open the hard 
shoulder, main road vehicles could enter the hard 
shoulder in the appropriate areas, reducing the num
ber of vehicles on the main road. This led to higher 
lane average speeds compared to the ZEROS strategy. 
Notably, the yellow and red areas in Figure 15 repre
sent the difference in average speed between the 
ZEROS strategy and the L-MADDPG-A� algorithm’s 
optimized strategy. It is found that under the four ser
vice level conditions, the utilization of the L- 
MADDPG-A� algorithm has demonstrated an 
enhancement in the average road speed and a reduc
tion in the time vehicles occupy the highway. This 
indicates that optimizing HSR strategies through 
the L-MADDPG-A� algorithm effectively enhances 
highway operational efficiency while ensures smooth 
traffic flow.

7. Conclusion

HSR strategies have been widely implemented in 
many countries, with numerous positive impacts on 
highway traffic operations. However, addressing how 

HSR strategies can positively affect highway efficiency, 
safety, and vehicle emissions while ensuring smooth 
passage for EVs remains a challenge. Based on the 
mathematical model of HSR strategy, we proposed a 
MADDPG algorithm combined with LSTM data fea
ture extraction to optimize HSR strategies. To ensure 
unimpeded EV travel, an improved A� algorithm was 
employed to find the optimal lane clearing solution. 
The effectiveness of the proposed methods was vali
dated through experiment using the SUMO simula
tion software. The experimental findings revealed the 
superior performance of the L-MADDPG algorithm in 
terms of training reward convergence across all four 
service levels when compared to other strategies. 
Moreover, an evaluation encompassing total travel 
time, TIT metrics, CO emissions and others demon
strated the effectiveness of the L-MADDPG algorithm. 
The application of the improved A� algorithm for 
lane clearing yields significant reductions in travel 
time of EVs, as well as braking times. These findings 
underscore the effectiveness of opening hard shoulders 
for highway traffic conditions across different service 
levels. It is worth mentioning that optimizing HSR 

Figure 15. Comparison of average speed on different lanes.
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strategies requires consideration of EV entry into 
regulated area, and lane clearing through the algo
rithm can effectively guarantee the smooth passage 
of EVs.

Although this study has made progress in optimiz
ing the HSR strategy, several limitations remain. First, 
the study does not account for external factors such 
as extreme weather conditions or construction activ
ities, which could significantly impact traffic flow and, 
consequently, the effectiveness of the HSR strategy. 
Future research could incorporate additional external 
variables, such as weather variations and construction 
influences, to enhance the model’s adaptability across 
diverse scenarios. Second, this study primarily focuses 
on the interaction between the HSR strategy and EVs, 
without adequately exploring the combined applica
tion of the HSR strategy with other active traffic man
agement measures, such as variable speed limits and 
ramp metering. Future studies could investigate the 
integrated optimization of the HSR strategy alongside 
these measures to address complex and dynamic traf
fic scenarios, thereby improving the overall efficiency 
and safety of traffic management systems. 
Furthermore, future research could consider scenarios 
where all vehicles are intelligent, connected, and 
autonomous, capable of real-time, latency-free com
munication with one another. Under such conditions, 
the hard shoulder could be treated as a regular lane. 
From the perspective of autonomous vehicle control 
and lane-changing behavior, the smooth passage of 
emergency vehicles could be ensured through precise 
vehicle control mechanisms. In this scenario, the core 
challenge of optimizing the hard shoulder strategy 
would shift from traditional traffic management to the 
control of autonomous vehicles. This shift could fur
ther enhance the adaptability and dynamic adjustment 
capabilities of intelligent transportation systems. Such 
research would provide new perspectives and solu
tions for the integration of traffic management and 
autonomous driving technologies.
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