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to enhance flex-route transit services
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ABSTRACT
As a promising on-demand transportationmode in low-demand areas, flex-
route transit, has attracted much attention in the transportation research
field. However, unexpectedly high demand levels caused by travel uncer-
tainty impact the reliability and development of flex-route transit services.
Although themeeting point strategy can deal with this problemeffectively,
selecting a location for the meeting points can substantially influence the
performance of this strategy. In this study, meeting point location selec-
tion is modeled as a simulation-based optimization (SO) problem, and a
Kriging-basedglobal optimizationmethodusingaPareto-basedmultipoint
sampling strategy (KGO-PS) is proposed to solve this problem. Through
comparison of several typical benchmark functions with other counter-
parts, the effectiveness of KGO-PS has been verified. Moreover, a real-life
flex-route transit service is employed to construct the SO problem, and
the optimization results show that the proposed algorithm can improve
the performance of flex-route transit services under unexpectedly high
demand levels.
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1. Introduction

In recent decades, continued social development has resulted in massive low-demand areas, such as
low-density suburban areas or sparse rural areas. This is a massive challenge for public transit systems
to provide cost-efficient service and customized service in these areas. Traditional fixed-route transit
services are considered inappropriate because of their rigid operatingmode and the lowand scattered
travel demands of these areas. Pure demand responsive transit services can satisfy personal door-to-
door demands; however, most of the time cost is unacceptable. At present, the most suitable transit
services in these areas are flexible transit services, which combine both the cost efficiency of fixed-
route transit services and the flexibility of pure demand responsive services.

Among many flexible transit services, the flex-route transit service is the most popular (Koffman
2004; Potts et al. 2010). Usually, it runs on a fixed route following a rapid timetable. Meanwhile, if
someone customizes his or her personal door-to-door travel demand through dial-a-ride systems and
the on-demand request is accepted, the base route is deviated to complete this request. Therefore,
it can be regarded as an on-demand transportation service that is suitable in low-density suburban
areas. According to practical experiences, the flex-route transit service is more attractive than the
traditional fixed-route transit service (Becker, Teal, and Mossige 2013) and more cost-efficient than
demand-responsive services in low-demand areas (Fittante and Lubin 2015).
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As an emerging on-demand transportation service, the flex-route transit service generally com-
pletes the passengers’ requests at the exact locations they reserved. However, in low-demand areas,
travel demand is oftenuncertain. Theunexpectedlyhigh-demand level ledbyuncertain travel demand
will considerably improve the rejection rate of the flex-route transit service and further impact its ser-
vice performance. Zheng, Li, et al. (2019) introduced meeting points into the flex-route transit service
and proposed a new mode of flex-route transit, which is the flex-route transit with meeting points.
This strategy preset meeting points among the service area, and the passengers can be picked up and
dropped off either at their reserved locations or at the meeting points. Moreover, this strategy can be
accomplished with smart personal devices and mobile internet.

Introducing the meeting point can benefit the flex-route transit services; however, the locations
of meeting points will substantially influence the performance of this strategy. Therefore, the optimal
locations of meeting points are the key issues that need to be studied.

Facing the aforementioned challenge, this study proposes a Kriging-based optimization method
for the optimal location selection of meeting points in a flex-route transit system. The contributions of
this study include the following:

(1) The locations of meeting points are essential to the performance of the flex-route transit system,
especially under unexpected high-demand level. How to determine suitablemeeting points loca-
tions is the key step to enhance performance of the flex-route transit system. To end of this, this
study aims to solve the location optimization problem of the meeting points.

(2) Considering the travel demand uncertainty, themeeting point locations problem ismodelled as a
simulation-based optimization model based on Monte Carlo simulation. This method can obtain
more realistic solutions, compared with analytical mathematical optimization model constructed
in the deterministic environment.

(3) The simulation-based optimization problem is a type of computationally expensive problem. To
solve the simulation-based optimization problem efficiently, a Kriging-based global optimization
method using a Pareto-based multipoint sampling strategy (KGO-PS) is proposed. The numerical
and simulation experiments demonstrate its effectiveness.

The remainder of this article is organized as follows: Section 2 reviews some relatedworks. Section 3
presents the simulation-based optimization model of meeting point locations. Section 4 proposes
the KGO-PS method and tests its performance through some typical benchmark functions. Section 5
studies simulation experiments based on a real-life flex-route transit line. Finally, some important
conclusions and plans for future work are presented in Section 6.

2. Literature review

2.1. The operational service capability optimization strategies of the flex-route transit
services

In most studies, the travel demand is assumed to be low and predictable (Qiu, Li, and Haghani 2015;
Chen and Nie 2017a; Chen and Nie 2017b; Quadrifoglio, Dessouky, and Palmer 2007; Quadrifoglio,
Dessouky, and Ordóñez 2008). However, in low-demand areas, the travel demand is usually uncertain.
The unexpected high-demand level led by this uncertainty will cause a negative impact on system
reliability (Farwell andMarx 1996) and restrict the wide application of flex-route transit service (Velaga
et al. 2012; Potts et al. 2010).

To resolve this, some operational service capability optimization strategies were proposed to
improve theoperationalmodeof the flex-route transit services and further promoted theperformance
of flex-route transit services under unexpectedly high demand levels; in this way, the negative impact
led by uncertain travel demand can be reduced. At present, three strategies exist: Qiu, Li, and Zhang
(2014) proposed a dynamic station strategy. In this strategy, accepted pick-up/drop-off locations are
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defined as temporary stations, which are provided to unaccepted passengers for their pick-up/drop-
off. Zheng, Li, andQiu (2018) proposed a slack arrival strategy; thismethod changes the distribution of
slack time between different segments by setting a threshold. With the development of information
science, the meeting-point-based mode is widely used in on-demand transportation services (Aïvodji
et al. 2016; Czioska,Mattfeld, andSester 2017;Qian et al. 2017). As anemergingon-demand transporta-
tion service, introducing meeting points into the flex-route transit service can considerably improve
its performance under unexpectedly high-demand levels (Zheng, Li, et al. 2019). However, their work
onlydeployed themeetingpoint locations randomlywhile overlooking the importanceof themeeting
point locations.Moreover, according toQiu, Li, and Zhang (2014), the simulationmodel can reproduce
the complex operational process of the flex-route transit systembetter than the analyticalmathemati-
cal model. Therefore, themeeting point location selectionmust bemodelled as an SO problem, which
uses a simulation model to capture the sophisticated relationship between meeting point locations
and the evaluation indicators of the flex-route transit system.

2.2. Simulation-based optimization (SO) problem

The SO problem is essentially a special optimization problem whose objective functions (or con-
straints) are computed through simulations. It can reproduce the complexities real life better than
an analytical mathematical model, and solving it can obtain a more realistic programme.

At present, SOproblems arewidely constructed for describing the real-life conditions of transporta-
tion services (Huang, Sun, and Zhang 2022; Hao, Song, and He 2022; Xiong et al. 2018; Gkiotsalitis and
Cats 2019; Kim et al. 2022; Liu et al. 2022). For example, Schmaranzer, Braune, and Doerner (2020) pro-
posed a headway optimization model based on the simulation of urban mass rapid transit networks.
The SO problem was a biobjective optimization problem, which contained cost reduction and ser-
vice level improvement. Liu et al. (2017) designed a simulation-based optimization problem for the
two-echelon vehicle routing problem based on stochastic demands. Chávez et al. (2017) studied sup-
ply chains and constructed a biobjective SO problem that minimized the stochastic transportation
time and the deterministic freight rate. Chen et al. (2018) considered the travel time variability in a
network, and the congestion-pricing problem with reliability maximization was modelled as an SO
problem.

SOproblems are tricky but common in real life engineering applications. There are somedrawbacks
to solving SO problems:

(1) The computation of the objective function value of the SO is based on the sophisticated simula-
tion process (i.e. ‘Black-box’ property) and not on the analytical mathematical model. This means
that the gradient of the SO model is hard to obtain, which leads to inappropriate gradient-based
mathematical optimization methods (Winston, Venkataramanan, and Goldberg 2003).

(2) The computational cost and the number of function evaluations are high when solving the SO
problems. Therefore, metaheuristics algorithms, such as the genetic algorithm and Tabu search,
which depend on random and extensive exploration in the whole design domain, are difficult to
be applied widely (Zheng, Xue, et al. 2019).

Therefore, essentially, the SO problem is a type of expensive black-box problem. The surrogate-
based global optimization is an efficient way that (Koullias and Mavris 2014) has received increasing
attention in recent years. Common surrogate models include the response surface, Kriging model,
radial basis function, and least square support vector regression. The core of surrogate-based global
optimization is to use surrogate models to predict new-step solutions based on known sampling
points through constant iterations; in this way, a relatively optimal area can finally be determined.

2.3. Infill sampling strategy in surrogate-based global optimization

In the process of surrogate-based global optimization, the core is the infill sampling strategy. The
step is to obtain new potential sampling points to renew the surrogate models in each iteration.
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After several iterations, the optimization processmay reach some important regions, such as the small
neighbourhood around the global optimum (Long et al., 2015). Over the past few decades, many infill
sampling strategies have been proposed for surrogate-based global optimization. According to the
number of sampling points in each iteration, they can be generally divided into two types: single-point
infill sampling strategy and multipoint infill sampling strategy. The single-point infill sampling strat-
egy adds only one point in each iteration. The most well-known is the efficient global optimization
(EGO), which is based on the expected improvement (EI) strategy; it selects the sampling point that
has the maximized EI function values based on the Kriging model (Jones, Schonlau, and Welch 1998).
The EI function considers both global exploration and local exploitation, and thus, it can lead the opti-
mization process efficiently. A bumpiness-based infill sampling strategy was proposed for application
in the RBF model (Gutmann 2001), and the strategy selects the point with the least bumpiness. Apart
from this, Regis and Shoemaker (2007) constructed a candidate sampling strategy through the pre-
dicted value and the minimum distance to the known sampling points to select the best point in a
group of candidates.

However, it shouldbenoted that the single-point infill sampling strategy is not efficient enoughand
is unsuitable for parallel computing for high-performance computers. Therefore, the multipoint infill
sampling strategy,which selectsmultiple samplingpoints in each iteration, is suitable for parallel com-
puting and has received increasing attention (Haftka, Villanueva, and Chaudhuri 2016). An effective
infill sampling strategy must consider the balance between global exploration and local exploita-
tion (i.e. sampling points obtained through both global searching and local searching). According to
Chung, Park, and Choi (2018), the criterion that obtains sampling points balancing exploration and
exploitation can be divided into two types: (1) Using a searching function that contains both global
exploitation and local exploitation (such as the EI function or the P-EI (Xing, Luo, and Gao 2020) func-
tion) to obtain new sampling points. (2) Using multiple search functions, some only represent global
exploration (such as the prediction error function of Kriging), and others only represent local exploita-
tion (such as the prediction value function of Kriging). For example, Viana, Haftka, and Watson (2013)
considered the nature that balances the exploitation and exploration of the EI function and extended
the EI to more surrogate models. In this method, the prediction error of the Kriging model is shared
with other surrogate models to help construct the EI. However, this method has its drawbacks: the
numberof samplingpoints in each iterationwill be restricted to thenumberof surrogatemodels.Dong
et al. (2016) proposed amultistart sampling strategy in reduced spacebasedon theKrigingmodel. This
strategy optimizes the prediction function of Kriging using amultistart optimization algorithm. To bal-
ance exploration and exploitation, it uses the Kriging prediction error to explore unknown areas. Then,
Dong et al. (2019) proposed a surrogate-assisted global optimization using a Pareto-based sampling
strategy. This algorithm constructs a multiobjective optimization model, which contains QRS predic-
tion, RBF prediction, Kriging prediction and the Kriging error, and solves it to obtain a set of sampling
points balancing exploration and exploitation. However, the strategy has two disadvantages: (1) three
objectives represent local searching, and only one represents global searching. Hence, most of the
sampling points may pay more attention to local searching. (2) The information of global searching
is completely from the Kriging; when the sampling points are selected from more on QRS and RBF,
the balance between exploration and exploitation is fragile. Li, Bing, and Yang (2022) employed the EI
function and proposed two sampling functions to obtain new sampling points balancing exploration
and exploitation. However, this method selects sampling points that pay more attention to local
exploitation and lack the means to jump out of the local valley.

In this work, a Kriging-based global optimization method using a Pareto-based multipoint sam-
pling strategy (KGO-PS) is proposed. This method provides a novel sampling mechanism for cre-
ating a unique balance between global exploration and local exploitation based on a type of
extended EI function (i.e. the P-EI function). The KGO-PS constructs a biobjective optimization prob-
lem based on the P-EI function, whose two objective functions represent global exploration and
local exploitation, and solves it by the multiobjective evolutionary algorithms based on decompo-
sition (MOEA/D). In this way, a Pareto optimal set containing multiple candidate points balancing
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exploration and exploitation can be obtained. Then, some potential sampling points will be selected
from the Pareto optimal set according to the probability of the improvement criterion. Moreover,
reduced-domain-based local sampling and global sampling are proposed to assist the KGO-PS.
Finally, the KGO-PS is applied to 11 benchmark functions and simulation experiments based on
a real-life flex-route transit service. The optimization results demonstrate that the KGO-PS out-
performs other counterparts, which is more reliable and effective in solving expensive black-box
problems.

3. Problem description

In this article, considering the uncertainty of the passengers’ travel demands, the meeting point loca-
tions problem is modelled as a simulation-based optimization problem. Then, a Kriging-based global
optimization method using a Pareto-based multipoint sampling strategy (KGO-PS) is proposed to
effectively solve the problem. The methodology framework can be seen in Figure 1.

In this section, the simulation-based optimization model for meeting point location problem is
introduced. The proposed KGO-PS algorithm will be presented in Section 4.

3.1. Flex-route transit systemwithmeeting points

The mode of flex-route transit with meeting points (FRT-MP) (see Figure 2) was introduced by Zheng,
Li, et al. (2019). In general, the FRT-MP systemcanbeassumed tobe a rectanglewith length L andwidth
W. The operational mechanism of the flex-route transit service with meeting points can be described
(see Figure 2) as follows: The bus operators will deploy somemeeting points that have their fixed and
suitable locations into the service area before real life applications, according to the land use, ques-
tionnaire surveys or operation planning methods. Then, the passengers can be picked up or dropped
off either at their reserved locations or atmeeting points that are located in their acceptedwalking dis-
tance. The vehicle runs according to the base route following a rapid timetable; it must drive from one

Figure 1. The methodology framework of the meeting point locations problem.
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terminal checkpoint to another after visiting all intermediate checkpoints (the black rectangle). If there
is a request outside the base route, in the case of meeting the timetable of two adjacent checkpoints,
the bus will deviate the base route to satisfy the request (the green circle). Otherwise, the request will
be rejected (red circle).

The passengers of the flex-route transit service can be divided into four types according to the
locations of their requests:

Type I: Pick-up and drop-off points, both not at checkpoints (deviated request outside checkpoints).
Type II: Pick-up points at checkpoints, not drop-off points (deviated request outside checkpoints).
Type III: Drop-off points at checkpoints, pickup points at (deviated request outside checkpoints).
Type IV: Pick-up and drop-off points both at checkpoints (nondeviated requests outside checkpoints).

The meeting point strategy can reduce the vehicle detour and improve the performance of the
flex-route transit services under unexpectedly high demand levels effectively. Moreover, with the
development of smart personal devices andmobile internet, passengers can complete their payments
and reservations and obtain pick-up/drop-off location information through online digital platforms. In
this background, flex-route transit services with meeting points are suitable and promising.

According to Zheng, Li, et al. (2019), during real life operations, the locations of meeting points
should be conducted appropriately. Therefore, selecting a suitable meeting point location is an
important research direction.

3.2. Simulationmodel of the flex-route transit systemwithmeeting points

According to Zheng, Li, et al. (2019), the operational process of the flex-route transit service with a
meeting point strategy (FRT-MP) (see Figure 3) can be described as follows: There are several meeting
points in the service area. Thepassengerswill reserve their pick-up anddrop-off locations by theonline

Figure 2. Flex-route transit service with meeting points.
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reservation system. After receiving the requests of the passengers, the reservation system plans the
transit route according to the rule of themeeting point (see Section 3.1) and the passengers’ reserved
requests. Considering that thepassengers’ travel demands are uncertain in real life, a simulationmodel
based onMonte Carlo simulation is constructed to reproduce the FRT-MPoperational process through
the following steps:

Step 1. Determine the research basis, including service area, timetable, meeting points and other
operational parameters.
Step 2. Determine whether the preset iteration number of the Monte Carlo Simulations is met. If
yes, go to Step 3; otherwise, go to Step 6.
Step 3. Approximate the demand generation and obtain passengers’ pick-up and drop-off
requests.
Step 4. Use the insertion heuristic algorithm based on the first-come, first-served policy (Qiu, Li,
and Zhang 2014; Zheng, Li, and Qiu 2018) to plan the vehicle path.

The parameters of the flex-route transit system are displayed as follows:
P: The number of checkpoints,
FS: Set of all non-checkpoints,
MP: Set of all meeting points,
PS: Set of the stations at the checkpoints, PS = {1, 2, . . . , P},
DTp: Scheduled departure time of each checkpoint, p∈PS,
RP: Set of all passengers’ request stations, RP = RPTypeI∪RPTypeII∪RPTypeIII∪RPTypeIV,
|RP|: Number of all passengers’ request stations,
Tdr: Dwell time at non-checkpoints,
Tdf : Dwell time at checkpoints,
Vb: The speed of vehicle,
Vw : The speed of passengers,
SS: Set of nodes in the flex-route transit system network, SS = PS∪FS∪MP,
AP: Set of all accepted requests,
AS: Matrix of arcs of all possible stations, AS = SS2,

Figure 3. The operational process of the flex-route transit system with meeting points strategy.
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dij : Distance from node i to node j, ∀ i, j∈ SS,
xij : xij = 0, 1, if the request: i to j is accepted, xij = 1; else, xij = 0,
yi: yi = 0, 1, if the node i is accepted, yi = 1; else, yi = 0,
pk : pick-up time of request k,
dk : drop-off time of request k,
Tr : Vehicle riding time in a trip,
M: The fleet size of the flex-route transit system,
OP: Operating cost per vehicle,
K : All passengers’ walking time,
WK : Walking time cost per passenger,
A: All passengers’ waiting time,
WA: Waiting time cost per passenger,
R: All passengers’ riding time,
WR: Riding time cost per passenger,
I: All passengers’ idle time,
WI: Idle time cost per passenger.
Then, the route plan model can be defined as follows:

Min : OP ∗ M ∗ Tr + WK ∗ K + WA ∗ A + WR ∗ R + WI ∗ I (1)

Subject to:

Tr =
∑

i,j∈PS∪FS∪MP

xijdij/Vb (2)

K =
∑
i∈AP

∑
j∈AP∪PS

xijdij/Vw (3)

A =
(∑
i∈FS

yi ∗ Tdr +
∑
i∈PS

yi ∗ Tdf

)
(4)

R =
∑
k∈AP

(dk − pk) (5)

I =
∑

p∈P−1

DTp − Trp (6)

∑
j∈SS

x1j = 1
∑
j∈SS

xj1 = 0 (7)

∑
j∈SS

xPj = 0
∑
j∈SS

xjP = 1 (8)

∑
i,j∈SS/{1,P}

xij =
∑

i,j∈SS/{1,P}
xji = yi (9)

xii = 0 ∀i ∈ SS (10)

DTp − Trp ≥ 0, ∀p ∈ PS (11)

The formulation (1) is the system evaluation indictor in this trip. The formulation (2–6) is the vehicle
riding time, passengers’ walking time, waiting time, riding time, and idle time. The formulation (7) rep-
resents the outgoing/incoming degree of the first checkpoint are 1/0. The formulation (8) represents
the outgoing/incoming degree of the final checkpoint are 0/1. The formulation (9) represents: if the
node i is accepted, its outgoing/incoming degree are both equal to 1; else, they are equal to 0. The
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formulation (10) represents there is no self-connection of the node i. The formulation (11) is the core
constrain, which represents the vehicle needs to follow the timetable of each checkpoint.

Step 5. Obtain specific travel data for each passenger and vehicle, and then return to step 2:
Step 6. Calculate the total system performance indicator:

F =
N∑
l=1

(OP ∗ M ∗ Trl + WK ∗ Kl + WA ∗ Al + WR ∗ Rl + WI ∗ Il)/N (12)

where F is the performance indicator of the flex-route transit system, which represents the
expected cost of the system under different travel demands (Zheng, Li, et al. 2019). N is the pre-
set number of travel demand generations (i.e. The number of iteration/Monte Carlo Simulation),
which is set as 10,000 in this article. Op is the operating cost per vehicle, M is the fleet size of the
system, and Trl is the vehicle riding time of the flex-route transit service in the l-th iteration.WK is
the walking time cost per passenger, and Kl is the walking time of all passengers in the l-th itera-
tion.WA is the waiting time cost per passenger, and Al is the walking time of all passengers in the
l-th iteration.WR is the riding time cost per passenger, and Rl is the riding time of all passengers
in the l-th iteration.WI is the idle time cost per passenger, and Il is the idle time of all passengers
in the l-th iteration.

According to Koffman (2004), most flex-route transit systems generally have a long headway over
half an hour. Hence, it is worth noting that it is more practical for passengers using flex-route transit
services to book specific trips based on the transit timetable instead of specifying a narrow time frame
for pick-up and drop-off services (Zheng, Li, et al. 2019).

Moreover, some adopted assumptions in previous studies (Qiu, Li, and Zhang 2014; Zheng, Li, and
Qiu 2018; Zheng, Li, et al. 2019) were employed in this study: (1) To facilitate analysis, only one of
the up and down directions is considered. (2) Passengers will arrive on time according to the pick-up
time set in advance by the reservation system without considering vehicle delay. (3) Passengers who
are rejected walk directly to their destination or walk to the nearest checkpoint. (4) The vehicle drives
straight in the X or Y direction.

3.3. Simulation-based optimization problem

The meeting point locations problem, considering the uncertainty of passengers’ travel demand, can
be described as follows: In the service area, some meeting points are preset in advance, and their
locations are fixed with station boards. The passengers’ requests are unknown before they make a
reservation with the reservation system. After the requests are submitted, the reservation system will
plan the vehicle route according to the meeting point locations and passengers’ requests. Then, the
system cost can be calculated. Because the meeting point location optimization for planners appears
before the transit operation, considering theuncertainty of thepassengers’ demand,weneed theopti-
malmeeting point locations, which can lead to the expected system costminimization under different
massive reservation request scenarios.

Here, the simulation-based optimization model of determining optimal meeting points is intro-
duced. The objective function is the expected system cost function (F). The constrained condition is
the expected passenger acceptance rate (RE). The simulation-based optimization model is defined as:

min : F(MP) =
N∑
l=1

(OP ∗ M ∗ Trl + WK ∗ Kl + WA ∗ Al + WR ∗ Rl + WI ∗ Il)/N (13)

s.t. RE = e (14)

Design Variables : 0 ≤ MPxm ≤ L; 0 ≤ MPym ≤ W ;m ∈ MP (15)
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Here, F is the expected system cost function, which is calculated through the simulation model in
Section 3.2. RE is the expected rejection rate of the flex-route transit service, which is also calculated
through the simulation model in Section 3.2. ε is a threshold, it is set as the expected rejection rate
value calculated through the simulation model, which is under the condition that the meeting points
locations are unoptimized and randomly generated. The MPxm and MPymare the design variables of
the simulation-based optimization problem.MPxm is the coordinate pair of the meeting points along
the X axis, andMPymis the coordinate pair of themeeting points along the Y axis. L is the length of the
service area of flex-route transit, andW is the width of the service area of flex-route transit. MP is the
vector of the meeting points.

4. Solution approach

The meeting point location problem with uncertainty is modelled based on the Monte Carlo simula-
tion, which is a simulation-based optimization (SO) problem. The SO is a type of expensive problem
(i.e. The calculations of objective functions are computationally time-consuming). The Kriging-based
global optimization (KGO) method is efficient in solving expensive problems. In this article, a Kriging-
based global optimization method using a Pareto-based multipoint sampling strategy (KGO-PS) is
proposed to solve the SO problem. The process of the KGO-PS is introduced as follows:

4.1. Kriging and P-EI function

The Kriging model is a type of surrogate model that is good at modelling multimodal and nonlinear
problems. The specific details can be seen in (Sacks et al. 1989).

The expected improvement (EI) function is the most famous searching function based on the
Kriging model and was first proposed by Jones, Schonlau, and Welch (1998). After obtaining a Krig-
ing model, we suppose the minimal value of all evaluated points is ymin. The expected value of an
unobserved point relative to ymin can be written as:

E[I(x)] = [(ymin − y(x))]F
(
ymin − y(x)

s(x)

)
+ s(x)f

(
ymax − y(x)

s(x)

)
(16)

where x is a sampling point in the design space. y(x) is the Kriging predicted value of sampling point
x, and s(x) is the predicted Kriging standard deviation of sampling point x.� and ϕ are the cumulative
distribution function and probability density function of the standard normal distribution, respec-
tively. Based on the EI function, Xing, Luo, and Gao (2020) proposed an extended version of EI, which
is the P-EI function. The P-EI function adds a parameter P to the traditional EI function to enhance the
searchability for other peaks of the EI function. The P-EI is shown as follows:

EP[I(x)] = [(ymin − y(x))]�
(
ymin − y(x)

P ∗ s(x)

)
+ P ∗ s(x)ϕ

(
ymin − y(x)

P ∗ s(x)

)
(17)

where P is an artificially predefined parameter and is more than 0, which is a drawback of the P-EI
function because its suitable value has not been proven by strict mathematical deduction. Therefore,
referring to the test example of Xing, Luo, andGao (2020) and their conclusion, the values of parameter
P in this article are defined as 1, 2 and 3.

Due toP > 0and s(x) ≥ 0, learning fromthedeductionof Fenget al. (2015) andSobester, Leary, and
Keane (2005), some features of the P-EI function can be concluded, and the P-EI function is composed
of two terms:

P1 = [(ymin − y(x))]F
(
ymin − y(x)

P ∗ s(x)

)
(18)

P2 = P ∗ s(x)f

(
ymin − y(x)

P ∗ s(x)

)
(19)
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The first term P1 reflects the local exploitation. Conversely, the second term P2 reflects global explo-
ration. The proving process is displayed in Appendix A. Therefore, using the P-EI function for global
optimization is efficient because theP-EI balances bothglobal exploration and local exploitation. How-
ever, the P-EI function gives equal weight to both exploration and exploitation. Hence, it may only
carry out either local searches or global searches sometimes. In the ‘Appendix B’ section, an example
is applied to demonstrate the disadvantage of the P-EI function and display our motivation.

4.2. Pareto-basedmultipoint sampling strategy

For designing a Kriging-based global algorithm, sampling points that balance global exploration and
local exploitation can be considered promising (Zhan, Qian, and Cheng 2017a). To end this and tar-
get the disadvantage of the P-EI function, this article proposes a Pareto-based multipoint sampling
strategy.

4.2.1. Sampling points obtained by biobjective optimization
First, the concept of ‘Pareto optimality’ must be introduced, considering a biobjective optimization
problem:

min : f = {f1(x), f2(x)} (20)

subject to : x = {x1, x2, . . . , xn} (21)

Then, considering two vectors, x1 and x2, if the following condition is met, it can be concluded that x2

dominates x1 or x1 < x2.

fi(x
1) ≥ fi(x

2), ∀ i; fi(x1) > fi(x
2), ∃i, i = 1, 2 (22)

If there are no solutions that can dominate solution x in the whole design space, solution x can be
called the Pareto optimal solution. A set of Pareto optimal solutions is called the Pareto optimal set,
and their correspondingobjective function values compose thePareto front. The aimofmultiobjective
optimization is to obtain a reliable Pareto optimal set.

Based on the above, a spontaneous idea is that by solving a biobjective optimization problem,
whose objectives represent global exploration and local exploitation, a Pareto optimal set contain-
ing candidate sampling points with different weights between exploration and exploitation can be
obtained. In this work, the biobjective optimization problem (see Formulations 25, 26 and 27) is
constructed based on P-EI functions. Consider the following six search functions:

P1 = [(ymin − y(x))]F
(
ymin − y(x)

P ∗ s(x)

)
, P = 1, 2, 3 (23)

P2 = P ∗ s(x)f

(
ymin − y(x)

P ∗ s(x)

)
, P = 1, 2, 3 (24)

When thevaluesofP aredifferent,P1 andP2 withP = 1, 2, 3will have idiographic advantages in solving
different problems. Generally, selecting the most suitable searching function for a particular problem
is difficult. Because of the black-box properties ofmost simulation-based problems, the problem char-
acteristics are difficult to capture in advance. Away to solve this problem is the integratedmethod (Shi,
Xie, andWang2013),which aggregates different searching functions into one integrated function. The
aim of the integrated method is to consider and balance all search functions that are aggregated and
implement search capabilities for eachaggregated search functionasmuchaspossible. In thisway, the
impact of selecting an unsuitable search function can be reduced. In this work, the integratedmethod
in the work (Li, Bing, and Yang 2022) is employed. The two integrated objectives and the biobjective
optimization problem are shown as follows:

O1 = 1
q
ln
(∑3

P=1
exp

(
−[(ymin − y(x))]�

(
ymin − y(x)

P ∗ s(x)

))
/q

)
(25)
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Figure 4. The process of selecting sampling points through biobjective optimization.

O2 = 1
q
ln
(∑P=1

3
exp

(
−P ∗ s(x)f

(
ymin − y(x)

P ∗ s(x)

))
/q

)
(26)

min : {O1,O2} (27)

where q is a control parameter and adopted the default value in (Li, Bing, and Yang 2022). Due to the
monotonic increase in exponential and logarithmic functions, minimizing O1 requires that each P1
(P = 1, 2, 3) be as large as possible; similarly, minimizing O2 requires that each P2 (P = 1, 2, 3) be as
large as possible. Therefore, O1 represents local exploitation, and O2 represents global exploration.

After the biobjective optimization problem is constructed, the multiobjective evolutionary
algorithm based on decomposition (MOEA/D) (Zhang and Li 2007) is employed to solve it. The details
of the MOEA/D can be seen in Appendix C. Then, because the two extreme points of the Pareto
front represent exploration and exploitation, to balance exploration and exploitation, they will be
first selected as sampling points. Finally, the probability of the improvement (PI) function (Jones
2001) is employed as the criterion to select new sampling points from the remaining candidates. The
formulation of the PI function is shown as follows:

PI = F

(
ymin − y(x)

s(x)

)
(28)

The PI function has a concrete practical meaning; it represents the probability that the objective func-
tion value of an unobserved point is better than the current optimum. Hence, it is usually employed
to select potential sampling points. The sampling process is shown in Figure 4:

4.2.2. Space-reduction-based greedy sampling
To further mine more precise optimal solutions, a space-reduction-based greedy sampling strategy is
proposed.
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Figure 5. Reduced space obtained by Formula (29)–(30).

The space reduction technology obtains a trust region that contains possibly potential sampling
points (Dong et al. 2016; Dong et al. 2018b; Gu 2021); in this way, the cost computing resource can
be decreased, and the search efficiency can be improved. Generally, the reduced space (Dong et al.
2018a) is a neighbourhood of the current best point (see formulation 29–30; Figure 5) and/or a small
hypercube (see formulation 31–33; Figure 6) composed of several promising points.

ox =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[xbest1 − e, xbest1 + e]
[xbest2 − e, xbest2 + e]

∩
∩

[lb1, ub1]
[lb2, ub2]

[xbest3 − e, xbest3 + e]
...

∩
...

[lb3, ub3]
...

[xbestd−1 − e, xbestd−1 + e]
[xbestd − e, xbestd + e]

∩
∩

[lbd−1, ubd−1]
[lbd , ubd]

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(29)

ε = δ ∗ (ubi − lbi) (30)

where xbest is the best sampled point. d is the dimension of the design space. lbi and ubi are the lower
andupper boundaries of the i-th dimension. δ is a threshold,which is small; it is set as 0.05 in this article,
according to sensitivity analysis.

PointtopM

⎡
⎢⎢⎢⎣

point1rank1 point2rank1

point1rank2 point2rank2
· · · pointdrank1

· · · pointdrank2

...
...

point1rankM point2rankM
· · · ...
· · · pointdrankM

Yrank1

Yrank2

...
YrankM

⎤
⎥⎥⎥⎦ (31)

LBi = min(pointi
rank1, pointirank2, . . . , pointirankM), i = 1, . . . , d (32)

UBi = max(pointirank1, pointirank2, . . . , pointirankM), i = 1, . . . , d (33)
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Figure 6. Reduced space obtained by Formulas (31)–(33).

where PointtopM is the set composed of the topMmost expensive samples, andM is set to 1/3 in this
article. LBi and UBi are the lower and upper boundaries in the i-th dimension of the reduced space.

After obtaining the reduced space, two unevaluated points with the smallest Kriging prediction
value are sampled in the two reduced spaces mentioned above. Then, the two points are regarded as
new sampling points. Its pseudocodes are shown below:

Algorithm 1. Space-reduction-based greedy sampling

Input: The Kriging trained through all expensive samples, Expensive samples set: S = {S1, S2, . . . , SK } and their corresponding
responses set: Y = {Y1, Y2, . . . , YK }, The dimension d of design space Ω, The lower and upper boundaries [lbi , ubi] of the i-th
dimension.

Output: two new sampling points [local1, local2] through local search.
(1) Obtain the current best responses: Ymin in the set Y and its corresponding samples: xbest.
(2) Construct the reduced space 1: neighbourhood of the current best point.

Construct the reduced space 2: hypercube composed of several promising points.
Based on reduced space 1, minimizing the Kriging prediction value:

Min: y(x) = f T (x)β̂ + rT (x)R−1(Y − Fβ̂)

Obtain the new sampling point: local1.
(4) Based on reduced space 2, minimizing the Kriging prediction value:

Min: y(x) = f T (x)β̂ + rT (x)R−1(Y − Fβ̂)

Obtain the new sampling point: local2.
(5) Return [local1, local2].

4.2.3. Exploring points with high uncertainty in promising regions
When the optimization process becomes trapped in a local valley, it will result in unnecessary costs.
One of the approaches is to increase the diversity of sampling (selecting high-uncertainty points).
In this section, to increase the diversity of sampling and explore the sparse area, points with high
uncertainty are sampled. To avoid unnecessary computing costs, the above process is based on the
promising region, which is defined as the hypercube in Section 4.2.2.
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A general condition for determining whether the optimization process becomes trapped in a local
valley is that the best solution in the n-th iteration is almost equal to the best solution in the (n–n1)-th
iteration. Hence, in this article, when the following global search condition is met, the optimization
process can be considered as a local valley:

[Best(n) − Best(n − 5)] = d (34)

where n is the current number of iterations of the algorithm and Best(n) is the best function value
evaluated in the n-th iteration. δ is a threshold, in this article, which is small, δ = 0.005.

Finally, two unevaluated points with the largest Kriging prediction error are sampled in the trust
reduced space, and the two points are regarded as new sampling points. Its pseudocodes are shown
below:

Algorithm 2. Exploring points with high uncertainty in promising region

Input: The Kriging trained through all expensive samples, Expensive samples set: S = {S1, S2, . . . , SK} and their corresponding
responses set: Y = {Y1, Y2, . . . , YK}, The dimension d of design space Ω, The lower and upper boundaries [lbi , ubi] of the i-th
dimension, The current number of iteration: n, The best function value evaluated in the n-th iteration: Best(n).

Output: two new sampling points [global1, global2] through global search.
If Best(n) – Best(n−5) ≤ 0.005

(1) Obtain the current best responses in the set Y : Ymin, and its corresponding samples: xbest.
(2) Construct the trust reduced space: hypercube composed of several promising points.
(3) Based on the trust reduced space, sampling 10000 cheap points in the reduced space CP = . . . {cp1, cp2, . . . , cp10000}

using the Latin hypercube sampling.
(4) Obtain the top two points: global1 and global2 with maximized Kriging error in set CP.
(5) Return [global1, global2].

End

4.3. The overall optimization algorithm

In this section, the flowchart (see Figure 7) and process of the proposed KGO-PS algorithm are given:

Step 1: Initial sampling using the design of the experiment (DOE) methods. The sampling set is S:
{S1, . . . , S2, . . . , SK}, and the objective function value of each point Y is evaluated: {Y1, . . . ,
Y2, . . . , YK}.

Step 2: Determine whether the stopping condition is reached. If yes, output the current optimal
solution. If not, go to Step 3.

Step 3: Construct the Kriging model based on the set S and Y.
Step 4: Solving the biobjective optimization problem:

Min :

{
1
q
ln

(
3∑

P=1

exp
(

−[(ymin − y(x))]�
(
ymin − y(x)

P ∗ s(x)

))
/q

)
, . . .

1
q
ln

(
P=1∑
3

exp
(

−P ∗ s(x)f

(
ymin − y(x)

P ∗ s(x)

))
/q

)}

Step 5: Select N new sampling points SP = {sp1, sp2, . . . , spN} from the Pareto optimal set obtained
in Step 4.

Step 6: Local search in the reduced space: {local1, local2}.
Step 7: Determine the global search condition; if yes, global search in the reduced space: {Global1,

Global2}.
Step 8: Add SP, {local1, local2}, and {Global1, Global2} into S.
Step 9: Delete the repeated points in set S.
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Figure 7. The flowchart of the KGO-PS algorithm.

Step 10: Evaluate the objective function value of the newly added points in S.
Step 11: Return to Step 2.

4.4. Numerical experiments to test the KGO-PSmethod

To verify the effectiveness and superiority, the KGO-PS is tested on 11 representative benchmark func-
tions, including 2 lower-dimensional functions and 9 higher-dimensional functions. The details of all
benchmark functions are shown in Table 1, and the formulations can be seen in the ‘Appendix D’
section. Then, several well-known algorithms, including EGO (Jones, Schonlau, andWelch 1998), EGO-
MO (Feng et al. 2015) and MISK (Li, Bing, and Yang 2022), are employed for comparison with KGO-PS.
The EGO is the most widely used Kriging-based global optimization algorithm, which is commonly
applied as a competitor in comparisons. The EGO-MO and MISK are two recently extended versions
of EGO that consider balancing global exploration and local exploitation. Moreover, the experimental
preparation is shown below:

(1) The number of initial samplings is set to 3∗d+ 2 for each algorithm by using the Latin Hypercube
Sampling (LHS) method, where d is the dimension of the benchmark function.
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(2) To avoid unrepresentative results, 10 independent runs are applied. The optimization results are
the mean values of 10 runs in this article.

(3) In these tests, the stopping condition is set to all testing algorithms: Fix the maximum number
of function evaluations (NFE), and compare the mean and variance of optimal solutions (OS). The
maximum NFE is set as 300 in lower-dimensional functions and 500 in higher-dimensional func-
tions. The mean OS represents the optimization precision, while the variance OS represents the
optimization robustness.

(4) Thenumber of newsamplingpointsNSP is set as 3 in thiswork, according to the sensitivity analysis
method.

The optimization results are shown in Table E1 (see Appendix E).
In Table E1, in terms of the mean OS, the KGO-PS is considerably better than the EGO algorithm

on all benchmark functions. In the variance of OS, the KGO-PS also has a smaller variance. The rea-
son for this is that although the EGO algorithm can balance global exploration and local exploitation,
it gives the same weight to them both. The EI function can be regarded as a special condition of P-
EI (P = 1); hence, the balance between exploration and exploitation is fragile. In higher-dimensional
problems, it is obvious that the KGO-PS hasmuchbetter results because the EGO is not good at solving
high-dimensional problems. In summary, the KGO-PS is more effective and reliable in solving highly
multimodal and nonlinear problems than the EGO. Moreover, the KGO-PS is based on a multipoint
sampling strategy, which is more in line with the needs of high-performance and multicore com-
puters. Compared with the EGO-MO algorithm, the KGO-PS shows strong dominance in almost all
benchmark functions, except for the SSF function. In terms of the mean OS, the KGO-PS shows sig-
nificant precision in the F1, AK, ED10, ED12, SS, SF12, H6, F16, TF and PAF functions. This is because
the EGO-MO lacks a strategy that can help it proceed with a local search in a promising region. Facing
highly multimodal and nonlinear problems, it is powerless. In the variance of OS, the KGO-PS is also
smaller in almost all problems. This means that the KGO-PS has advantages in stability and is more
reliable.

Compared with the MISK algorithm, the KGO-PS shows strong dominance in almost all benchmark
functions, except for the PAF function. In mean OS, the KGO-PS shows significant precision in F1, AK,
ED10, ED12, SS, SF12, H6, F16 andSF20 functions. This is because theMISK lacks a strategy that canhelp
it proceedwith a local search in a promising region. Facinghighlymultimodal andnonlinear problems,
it is powerless. In the variance of OS, the KGO-PS is also smaller in almost all problems. This means that
the KGO-PS has advantages in stability and is more reliable.

In summary, compared with other algorithms, the proposed KGO-PS can obtain more pre-
cise optimal solutions with the same computing costs and stronger robustness. Hence, it can be
concluded that the KGO-PS is more effective, which may be more suitable for solving real life
problems.

Table 1. The details of the benchmark functions.

Function Optimum Design space Dimension

F1 −2 [−1, 1] 2
Ackley (AK) 0 [−30, 30] 2
ED10 0 [−5, 5] 10
ED12 0 [−1, 1] 12
SS 0 [−2, 2] 10
SF12 0 [−1, 1] 12
HN6 −3.322 [0, 1] 6
Trid 6 −50 [−36, 36] 6
PAF −45.8 [2.1, 9.9] 10
F16 25.875 [−1, 1] 16
SF20 (SSF) 0 [−10, 10] 20
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Table 2. Parameter values of Line 646.

Parameter Description Value

L The length of the service area 10 miles
W The width of the service area 1 mile
M The fleet size of the flex-route transit system 1
C The number of checkpoints 3
D Unexpectedly high-demand level 25 passenger/trip
Vb The speed of the vehicle 25 miles/h
Vw The speed of the passengers 3 miles/h
WK Walking time cost per passenger $25/passenger/h
WA Waiting time cost per passenger $15/passenger/h
WR Riding time cost per passenger $30/passenger/h
WI Idle time cost per passenger $20/passenger/h
Op Operating cost per vehicle $60/vehicle/h
Tdr Dwelling time at on-demand request stops 0.3min
Tdf Dwelling time at checkpoints 1min
Tunit The predefined trip time between two consecutive checkpoints 20min
Tr The predefined single-trip time 40min
β1/β2/β3/β4 The proportions of four types of passengers 0.1/0.4/0.4/0.1
Dwalking Accepted walking distance of passengers 0.5 mile

5. Case study

In this section, the KGO-PS is applied to solve the simulation-based optimization problem in Section 3.
To display the effectiveness of KGO-PS, some representative algorithms are selected as competitors,
includingparticle swarmoptimization (PSO),which is a typicalmetaheuristic; efficient global optimiza-
tion (EGO), which is the most well-known Kriging-based optimization algorithm and is widely used
in engineering applications; EGO-MO and MISK, which are recent Kriging-based global optimization
algorithms using a multipoint infill sampling strategy.

5.1. Parameter values in the simulationmodel

The simulation model of the flex-route transit service is performed through MATLAB 2020a and Line
646 in Los Angeles (see Figure 8). It was generally applied as a case study in previous works (Quadri-
foglio, Dessouky, and Palmer 2007, 2008; Qiu, Li, and Zhang 2014; Zheng, Li, and Qiu 2018; Zheng, Li,
et al. 2019). When it is employed as a case study, Line 646 is modelled hypothetically (see Figure 9).
The flex-route transit system is composed of three checkpoints, one base route, a single service vehi-
cle, and a service area with length L and widthW. The parameters in the simulation model are given
by Zheng, Li, et al. (2019) and can be seen in Table 2:

For comparison, the value of system cost function of flex-route transit system with unoptimized
meeting points are set as the initial value. To avoid the contingency of the initial value, the results
are calculated as the average simulation values of flex-route transit system, whosemeeting points are
randomly generated with 10 times. The calculated results are F = 366.5, while RE = 35.73%.

According to Wu et al. (2021), the dimension of the expensive black-box problem is 10–30, and it
can be regarded as a difficult high-dimensional optimization problem. Therefore, l should not be a
number that is too large. In this article, l is set to 10, and the optimization model has 20 variables.

5.2. Optimization results

The optimization results can be seen in Table 3, and the optimization processes of PSO, EGO, MSIK,
EGO-MO and KGO-PS are shown in Figures 10–12. In the actual problem, the stopping condition
of each algorithm is set to NFE > NFEmax. For EGO, MISK and KGO-PS, the NFEmax is 500. Because
metaheuristics for expensive black-box problems generally requiremore NFE; itsNFEmax is set to 1000.
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Figure 8. The schematic diagram of Line 646.

In Figure 10, the best values of PSO are taken over by EGO and KGO-PS after approximately 20
NFE. The searching process of PSO continues to gather at one value for a long time because PSO is
a method of unordered search; it keeps going in the direction of letting it down. When it is in a local
valley, it jumps out with unacceptable NFE. Hence, it is unsuitable for expensive black-box problems
due to toomany expensive computing resources. Comparedwith PSO, the EGO and KGO-PS can jump
out the local valley using less NFE because they explore the design space based on the Kriging infor-
mation and canmake a unique balance between global exploration and local exploitation. Compared
with EGO, KGO-PS can obtain better values after approximately 100 NFE. In addition, the consumed
NFE that KGO-PS needs when it continues to gather at one value is less than EGO, which means that
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Figure 9. The hypothetical model of Line 646.

Figure 10. Iterative results based on NFE (PSO, EGO and KGO-PS).

the ability of KGO-PS to jump out of the local optimal solution is stronger than EGO. This is normal
because the EI function can be regarded as a special P-EI, and sometimes its balance between explo-
ration and exploitation is fragile, asmentioned above. The KGO-PS can explore thewhole design space
completely and find better solutions more easily.
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Figure 11. Iterative results based on NFE (MISK and KGO-PS).

Figure 12. Iterative results based on NFE (EGO-MO and KGO-PS).

In Figures 11 and 12, the MISK obtains its best values in approximately 70 NFE. Unfortunately, the
MISK will become trapped in a local valley from 70 NFE to 500 NFE. This is because the MISK will select
new sampling points that have higher weight on the local exploitation and less weight on the global
exploration and lacks a strategy that helps it jump out of the local valley. This condition also occurred
in EGO-MO. Compared with it, the KGO-PS has a stronger ability to jump out of the local valley. It will
not last long at a value, which means that the KGO-PS can make a better balance between global
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Table 3. The optimization results of the simulation experiments.

Algorithm Optimal solution Rejection rate NFE Running time

Initialization without optimization 366.5 35.73% – –
PSO 330.4 31.69% 1000 32.2 h
EGO 324.7 26.09% 500 16.7 h
KGO-PS 317.6 24.66% 500 16.7 h
MISK 324.1 29.08% 500 16.7 h
EGO-MO 320.1 28.78% 500 16.7 h

Figure 13. The influence of meeting point locations.

exploration and local exploitation. Therefore, the KGO-PS can efficiently solve expensive black-box
problems.

In Table 3, experiencing 1000 NFE, the PSO can obtain the best value: 330.4. While experiencing
500NFE, the KGO-PS,MISK, EGO-MOand EGO can obtain the best values: 317.6, 324.1, 320.1 and 324.7,
respectively. This demonstrates that the KGO-PS can obtain better optimal solutions using the sameor
fewer computing resources,whichproves that theKGO-PS ismore suitable for solvingexpensiveblack-
box problems in real life engineering applications. Compared with the initial solution, the KGO-PS can
reduce the system cost by 12.8%. Moreover, it can also reduce the rejection rate of the flex-transit
system toapproximately 31%,whichwill attractmorepassengers. Therefore, it is necessary tooptimize
themeeting point locations and effectively improve the performance of the flex-route transit services
under unexpectedly high-demand levels.

5.3. The influence ofmeeting point locations on the FRT-MP system performance

The flex-route transit with meeting points (FRT-MP), which was proposed by Zheng, Li, et al. (2019),
is an improved mode of the traditional flex-route transit. The meeting point location is an important
factor that influences the FRT-MP performance. In this section, the influence is displayed in detail (see
Figure 13):
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The system performance metric is composed of five parts (the cost of vehicle running, passengers’
riding time, walking time, waiting time and idle time). Then, the meeting point location influencing
the five parts will be demonstrated as follows:

The cost of vehicle running and passengers’ riding time is mainly dependent on the time of vehicle
running. In Figure 13, it canbe seen that theoptimizedmeetingpoints (theorange triangle) can reduce
the vehicle detour effectively. Hence, the vehicle running distance is shorter. Without considering the
road resistance, the vehicle running time of optimizedmeeting points is less than that of unoptimized
meetingpoints (the yellow triangle). For thewalking time, the optimizedmeetingpoint canbe located
at a suitable location, which can reduce the passengers’ walking time. For the waiting time, the opti-
mizedmeeting points (the orange triangle) can effectively reduce the vehicle detour. In real life, it can
improve the on-time performance of vehicles and reduce passengers’ walking time. For the idle time
(i.e. the extra waiting time if the vehicle arrives at checkpoints before the timetable), although the
optimizedmeeting points will increase the idle time slightly (i.e. the vehicle running time is saved, and
the vehicle can arrive at the checkpoints in advance), the increase in idle time cost is far less than the
reduction in other costs (vehicle running, passengers’ riding time, walking time and waiting time).

In summary, suitable meeting point locations can considerably enhance the performance of the
FRT-MP system, which must be optimized.

6. Conclusion

As an on-demand transportation service, flex-route transit services are promising for promoting sus-
tainable societal development. In this work, the optimal locations of meeting points are studied to
improve the performance of flex-route transit services under unexpectedly high-demand levels. By
using the simulation model to reproduce the complex operating process of the flex-route transit
services, the meeting point location selection is modelled as a simulation-based optimization (SO)
problem. Then, a Kriging-based global optimization algorithm using a Pareto-based multipoint sam-
pling strategy (KGO-PS) is proposed to efficiently solve the SOproblem. Finally, numerical experiments
and simulation experiments based on real life Line 646 have proven that the KGO-PS is more effective,
reliable and brief than other well-known surrogate-based global optimization algorithms. The main
contributions of this paper are summarized as follows:

(1) The key parameters of the meeting points strategy (i.e. the optimal locations of meeting points)
is studied, in this way, the performance of flex-route transit services under unexpectedly high-
demand levels can be improved.

(2) Considering the undeterministic passengers’ travel demand, themeeting point location problem
is modelled as a simulation-based optimization model based on Monte Carlo Simulation. In this
way, more realistic solutions can be obtained.

(3) To address the disadvantages of P-EI functions, the KGO-PS algorithm is designed. It provides a
novel mechanism that realizes the balance between global exploration and local exploitation.
Moreover, compared with other methods, it is more effective and reliable.

However, the current work still has some limitations: (1) Solving high-dimensional expensive black-
box problems is an acknowledged challenge to surrogate-based optimization algorithms. In this work,
this problem also constrained the number ofmeeting points. Futureworkwill improve the algorithm’s
performance under higher-dimension (> 10–30) problems. (2) The proposed algorithm is focused on
solving expensive black-box problems with simple constraints or without constraints. In the future, it
will be extended to solve expensive black-box problems with complex constraints.
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Appendices

Appendix A. The derivation of the properties of P1 and P2
As Formulas (18) and (19) shown:

P1 = [(ymin − y(x))]�
(
ymin − y(x)

P ∗ s(x)

)
(35)

P2 = P ∗ s(x)ϕ

(
ymin − y(x)

P ∗ s(x)

)
(36)

Learning from Zhan, Qian, and Cheng (2017b), the search property of the second term of the traditional EI function is
mainly dependent on s(x), and the influence of y(x) can generally be overlooked. The second termof EI can be regarded as
a special condition of P2 when P = 1. Observing the formulation of P2, the parameter Pwill further increase the influence
of s(x) compared with the second term of the traditional EI function. Therefore, the influence of y(x) is approximately
overlooked in this article. Therefore, the partial derivative of P2 with respect to s(x) is given as:

∂(P2)

∂(s(x))
= P ∗

[
ϕ

(
ymin − y(x)

P ∗ s(x)

)
+
((

ymin − y(x)

P ∗ s(x)

)2
)

∗ ϕ

(
ymin − y(x)

P ∗ s(x)

)]
(37)

Due to 0 < � < 1, 0 < ϕ and s(x) > 0, it is obvious that:

∂(P2)

∂(s(x))
> 0 (38)

This means that P2 is positively correlated with s(x). Therefore, maximizing P2 requires s(x) to be as large as possible; in
other words, it searches points with high uncertainty. P2 represents global exploration.

Then, the partial derivatives of P1 with respect to y(x) and s(x) are given as:

∂(P1)

∂(y(x))
= −�

(
ymin − y(x)

P ∗ s(x)

)
− ymin − y(x)

P ∗ s(x)
∗ ϕ

(
ymin − y(x)

P ∗ s(x)

)
(39)

∂(P1)

∂(s(x))
= − (ymin − y(x))2

P ∗ s(x) ∗ s(x)
∗ ϕ

(
ymin − y(x)

P ∗ s(x)

)
(40)

Due to 0 < � < 1, 0 < ϕ, and s(x) > 0, it is obvious that:

∂(P1)

∂(s(x))
< 0 (41)

Thismeans thatP1 is negatively correlatedwith s(x). SinceKriging is a typeof interpolationmodel, at least onepointwhose
prediction value y(x) is less than or equal to ymin exists. When maximizing P1, we only need to consider the following
condition: y(x) ≤ ymin because if y(x) > ymin, P1 < 0; if y(x) ≤ ymin, P1 ≥ 0. Under this condition:

∂(P1)

∂(y(x))
< 0 (42)

Therefore, maximizing P1 requires that y(x) and s(x) be as small as possible. In other words, the point maximizing P1 has
small prediction values and low uncertainty, and P1 places emphasis on exploiting the predictor and no emphasis on
exploring points that are uncertain. Maximizing P1 represents local exploitation.

Appendix B. An example to illustrate the disadvantage of the P-EI function
Consider a function:

y = (6x − 2)2sin(12x − 4), 0 < x < 1 (43)

The Kriging model is constructed by six points (0, 0.1, 0.2, 0.3, 0.4, 1), and the new sampling point is obtained by
maximizing the P-EI function, P1, P2. For illustrative purposes only, here, the value of parameter P is set to 1.

https://doi.org/10.1016/j.trc.2018.05.015
https://doi.org/10.1016/j.trc.2019.07.012
https://doi.org/10.1016/j.trb.2019.03.001
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Figure A1 shows the Kriging prediction function (the red line) constructed by the six points and the real function
(the purple line). Figure A2 gives the P-EI, P1, P2 function curve (the red, purple and blue lines) and points obtained by
maximizing the P-EI, P1, and P2 functions. It is obvious that in this process of obtaining new sampling points, the point
obtained by maximizing the P-EI function is the same as the point obtained by maximizing the P1 function. Therefore,
unfortunately, in this example, it can be concluded that the P-EI function is only for local exploitation while ignoring
global exploration.

Appendix C. Multiobjective evolutionary algorithm based on decomposition
(MOEA/D)
MOEA/D is one of the most popular algorithms for solving biobjective optimization problems (Zhang and Li 2007). The
MOEA/D basis is the decomposition strategy. The decomposition into multiple scalar optimization subproblems refers
to: instead of processing as a whole, decomposing one into a single-objective optimization problem. The decomposition
is achieved through the polymerization method. Due to its good performance in nonlinear problems, the Chebyshev
method is the most commonly used method, which can be seen as follows:

min : gtch(x|λ, z) = max{λi|fi(x) − zi|} (44)

s.t. x ∈ D (45)

where tch represents the Chebyshev decomposition method and z is the reference point, z = (z1, z2 . . . ., zm)T . For each
i = 1, 2 . . . , m. zi = minfi (x), m is the target number of the multiobjective optimization problem. fi is the i-th objective
function of the multiobjective problem. The setting of the reference point can make the population distribution more
uniform and improve the algorithm effect.

The pseudocode of MOEA/D is summarized in Algorithm 3:

Appendix D. The benchmark function used in the numerical experiments
1. F1 function

y = x1
2 + x2

2 − cos(18x1) − cos(18x2) (46)

2. Ackley (AK) function

y = 20 + exp(−20 ∗ exp(−0.2 ∗ (0.5x12 + 0.5x22)
0.5

) − exp(0.5cos(2πx1 + 2πx2)) (47)

Figure A1. Kriging and original function of the example function.
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Figure A2. Sampling points obtained by maximizing P-EI, P1 and P2 (i.e. To facilitate identification, each function curve has been
shifted up or down).

Algorithm 3.MOEA/D

Input: a multiobjective optimization problem: min: f 1(x), f 2(x) . . . , fm(x)
A stop condition: the maximum number of iterations Gen.
The size of population: N
A set of weight vectors: λ = (λ1j , . . . ,λ

i
j): i = 1, 2, . . . , N; j = 1, 2, . . . ,m.

Number of neighbours: T
Output: Approximate Pareto Frontier: EP.
1. Initialization
2. suppose EP = ∅ (The ∅ represents an empty set).

3. Hartman6 (H6) function

y = −
4∑

i=1

αiexp

⎡
⎣−

6∑
j=1

Bij(xj − Qij)
2

⎤
⎦ (48)

α = [1, 1.2, 3, 3.2]T (49)

B =

⎡
⎢⎢⎣

10
0.05

3
10

17
17

3
17

3.5
8

1.7
0.05

3.5
0.1

1.7
8

8
14

10
10

17
0.1

8
14

⎤
⎥⎥⎦ (50)

Q = 10−4

⎡
⎢⎢⎣

1312
2329

1696
4135

5569
8307

2348
4047

1451
8828

3522
8732

124
3736

8283
1004

5886
9991

2883
5743

3047
1091

6650
381

⎤
⎥⎥⎦ (51)

4. Trid Function (TF)

y =
6∑

i=1

(xi − 1)2 −
6∑

i=2

xixi−1 (52)
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3. Calculate the distance between each weight vector and the ownership vector, take the nearest T weight vectors of each
weight vector, and store their index in B. For each i = 1, 2, . . . ., N, B(i) = {i1, i2, . . . ., iT }.

4. Randomly or by other methods to generate initial population: x1, x2, . . . ., xN .
5. For each i = 1, 2, . . . ., N, set FVi = F(xi).
6. Initialize reference point z.
7. while the stop condition is not met
8. for i = 1: N
9. Generate offspring: randomly select two indices k and l from B(i), and use analog binary crossover operator to

generate offspring individuals x∗ from xk and xl .
10. Adjustment: if necessary (out of bounds, etc.), then adjust x∗.
11. Calculate the objective function value F(x∗).
12. for j = 1:m
13. if fj(x∗)< zj
14. zj = fj(x∗)
15. else
16. zj = zj
17. end
18. end
19. for j = 1: sum(B(i))
20. if gtch(x∗ | λj , z) ≤ gtch(xj | λj , z)
21. xj = x∗, FVj = F(x∗)
22. else
23. xj = xj , FVj = FVj
24. end
25. end
26. Update EP: First delete all target vectors dominated by F(x∗) in EP, then add the F(x∗) to EP.
27. end % corresponds to the for in Line 8
28. end% corresponds to thewhile in Line 7
29. END

5. Paviani function (PAF)

y =
10∑
i=1

[ln2(xi − 2) + ln2 (10 − xi )] −
(

10∏
i=1

xi

)0.2

(53)

6. F16 function

y =
16∑
i=1

16∑
j=1

aij(xi
2 + xi + 1)(xj2 + xj + 1) (54)

(row : 1 − 8)aij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
0 1

0 1
1 0

0 0
0 0

1 0
0 1

0 0
0 0

1 1
1 0

0 0
0 0

1 0
1 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

1 1
0 1

0 0
0 1

0 0
0 0

1 0
0 1

0 0
0 1

0 0
0 0

1 1
0 0

0 0
1 0

0 0
0 0

0 1
0 0

0 1
0 0

0 0
1 0

0 1
0 0

0 1
0 0

0 0
0 1

1 0
0 0

0 0
0 0

0 1
1 0

1 0
0 0

0 0
1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(55)

(row : 9 − 16)aij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

1 0
0 1

0 1
0 0

0 0
0 0

1 0
0 1

0 0
0 1

0 1
0 0

1 0
0 1

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

1 1
0 1

0 0
0 0

0 0
0 0

1 0
0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(56)

7. Sum Squares function (SF)

y =
12/20∑
i=1

i ∗ xi
2 (57)
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8. SS function

y =
10∑
i=1

i ∗ xi
2 (58)

9. ED function

y =
10/12∑
i=1

i∑
j=1

xj
2 (60)

Appendix E

Table E1. Comparison of EGO and other algorithms.

Function Standard KGO-PS EGO EGO-MO MISK

F1 OS Mean −2 −1.9991 −1.9935 −1.7336
Variance 0 7.0278e-7 1.3984e-4 0.0346

AK OS Mean 0.0366 0.1137 0.0563 0.5245
Variance 0.0013 0.0080 0.0017 1.043

ED10 OS Mean 0.00625 1.9840 0.0284 0.1241
Variance 2.0334e-6 1.6460 0.0048 0.0289

ED12 OS Mean 0.0027 1.8240 0.0056 0.0079
Variance 1.0334e-6 0.1678 2.7965e-5 1.7985e-5

SS OS Mean 0.0012 3.7192 0.0562 0.0246
Variance 2.853e-5 0.7767 0.0365 0.0028

SF12 OS Mean 0.0035 0.3518 0.0145 0.0079
Variance 3.4528e-7 0.0075 0.0092 5.4892e-6

H6 OS Mean −3.3095 −3.0263 −3.2842 −3.3005
Variance 0.0029 0.0185 0.0046 0.0041

TF OS Mean −49.56 −40.91 −46.9378 −49.9921
Variance 0.1606 14.9129 3.3716 3.6144e-5

PAF OS Mean −45.5 −44.0781 −44.549 −45.3212
Variance 0.0407 0.3209 0.2363 0.0194

F16 OS Mean 25.875 36.2879 25.875 25.875
Variance 0 2.2745 0 0

SF20 (SSF) OS Mean 0.5233 11.9664 0.4063 8.1408
Variance 0.0455 1.2181 0.0105 15.7272
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