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to enhance flex-route transit services
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ABSTRACT ARTICLE HISTORY

As a promising on-demand transportation mode in low-demand areas, flex- Received 15 August 2022
route transit, has attracted much attention in the transportation research Accepted 23 March 2023
field. However, unexpectedly high demand levels caused by travel uncer- KEYWORDS

tainty impact the reliability and development of flex-route transit services. o, jemand transportation;
Although the meeting point strategy can deal with this problem effectively, flex-route transit service:
selecting a location for the meeting points can substantially influence the meeting point locations;
performance of this strategy. In this study, meeting point location selec- Kriging-based global
tion is modeled as a simulation-based optimization (SO) problem, and a optimization method
Kriging-based global optimization method using a Pareto-based multipoint

sampling strategy (KGO-PS) is proposed to solve this problem. Through

comparison of several typical benchmark functions with other counter-

parts, the effectiveness of KGO-PS has been verified. Moreover, a real-life

flex-route transit service is employed to construct the SO problem, and

the optimization results show that the proposed algorithm can improve

the performance of flex-route transit services under unexpectedly high

demand levels.

1. Introduction

In recent decades, continued social development has resulted in massive low-demand areas, such as
low-density suburban areas or sparse rural areas. This is a massive challenge for public transit systems
to provide cost-efficient service and customized service in these areas. Traditional fixed-route transit
services are considered inappropriate because of their rigid operating mode and the low and scattered
travel demands of these areas. Pure demand responsive transit services can satisfy personal door-to-
door demands; however, most of the time cost is unacceptable. At present, the most suitable transit
services in these areas are flexible transit services, which combine both the cost efficiency of fixed-
route transit services and the flexibility of pure demand responsive services.

Among many flexible transit services, the flex-route transit service is the most popular (Koffman
2004; Potts et al. 2010). Usually, it runs on a fixed route following a rapid timetable. Meanwhile, if
someone customizes his or her personal door-to-door travel demand through dial-a-ride systems and
the on-demand request is accepted, the base route is deviated to complete this request. Therefore,
it can be regarded as an on-demand transportation service that is suitable in low-density suburban
areas. According to practical experiences, the flex-route transit service is more attractive than the
traditional fixed-route transit service (Becker, Teal, and Mossige 2013) and more cost-efficient than
demand-responsive services in low-demand areas (Fittante and Lubin 2015).
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As an emerging on-demand transportation service, the flex-route transit service generally com-
pletes the passengers’ requests at the exact locations they reserved. However, in low-demand areas,
travel demand is often uncertain. The unexpectedly high-demand level led by uncertain travel demand
will considerably improve the rejection rate of the flex-route transit service and further impact its ser-
vice performance. Zheng, Li, et al. (2019) introduced meeting points into the flex-route transit service
and proposed a new mode of flex-route transit, which is the flex-route transit with meeting points.
This strategy preset meeting points among the service area, and the passengers can be picked up and
dropped off either at their reserved locations or at the meeting points. Moreover, this strategy can be
accomplished with smart personal devices and mobile internet.

Introducing the meeting point can benefit the flex-route transit services; however, the locations
of meeting points will substantially influence the performance of this strategy. Therefore, the optimal
locations of meeting points are the key issues that need to be studied.

Facing the aforementioned challenge, this study proposes a Kriging-based optimization method
for the optimal location selection of meeting points in a flex-route transit system. The contributions of
this study include the following:

(1) The locations of meeting points are essential to the performance of the flex-route transit system,
especially under unexpected high-demand level. How to determine suitable meeting points loca-
tions is the key step to enhance performance of the flex-route transit system. To end of this, this
study aims to solve the location optimization problem of the meeting points.

(2) Considering the travel demand uncertainty, the meeting point locations problem is modelled as a
simulation-based optimization model based on Monte Carlo simulation. This method can obtain
more realistic solutions, compared with analytical mathematical optimization model constructed
in the deterministic environment.

(3) The simulation-based optimization problem is a type of computationally expensive problem. To
solve the simulation-based optimization problem efficiently, a Kriging-based global optimization
method using a Pareto-based multipoint sampling strategy (KGO-PS) is proposed. The numerical
and simulation experiments demonstrate its effectiveness.

The remainder of this article is organized as follows: Section 2 reviews some related works. Section 3
presents the simulation-based optimization model of meeting point locations. Section 4 proposes
the KGO-PS method and tests its performance through some typical benchmark functions. Section 5
studies simulation experiments based on a real-life flex-route transit line. Finally, some important
conclusions and plans for future work are presented in Section 6.

2. Literature review

2.1. The operational service capability optimization strategies of the flex-route transit
services

In most studies, the travel demand is assumed to be low and predictable (Qiu, Li, and Haghani 2015;
Chen and Nie 2017a; Chen and Nie 2017b; Quadrifoglio, Dessouky, and Palmer 2007; Quadrifoglio,
Dessouky, and Ordé6iiez 2008). However, in low-demand areas, the travel demand is usually uncertain.
The unexpected high-demand level led by this uncertainty will cause a negative impact on system
reliability (Farwell and Marx 1996) and restrict the wide application of flex-route transit service (Velaga
et al. 2012; Potts et al. 2010).

To resolve this, some operational service capability optimization strategies were proposed to
improve the operational mode of the flex-route transit services and further promoted the performance
of flex-route transit services under unexpectedly high demand levels; in this way, the negative impact
led by uncertain travel demand can be reduced. At present, three strategies exist: Qiu, Li, and Zhang
(2014) proposed a dynamic station strategy. In this strategy, accepted pick-up/drop-off locations are
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defined as temporary stations, which are provided to unaccepted passengers for their pick-up/drop-
off. Zheng, Li, and Qiu (2018) proposed a slack arrival strategy; this method changes the distribution of
slack time between different segments by setting a threshold. With the development of information
science, the meeting-point-based mode is widely used in on-demand transportation services (Aivod;i
etal.2016; Czioska, Mattfeld, and Sester 2017; Qian et al. 2017). As an emerging on-demand transporta-
tion service, introducing meeting points into the flex-route transit service can considerably improve
its performance under unexpectedly high-demand levels (Zheng, Li, et al. 2019). However, their work
only deployed the meeting pointlocations randomly while overlooking the importance of the meeting
point locations. Moreover, according to Qiu, Li, and Zhang (2014), the simulation model can reproduce
the complex operational process of the flex-route transit system better than the analytical mathemati-
cal model. Therefore, the meeting point location selection must be modelled as an SO problem, which
uses a simulation model to capture the sophisticated relationship between meeting point locations
and the evaluation indicators of the flex-route transit system.

2.2. Simulation-based optimization (SO) problem

The SO problem is essentially a special optimization problem whose objective functions (or con-
straints) are computed through simulations. It can reproduce the complexities real life better than
an analytical mathematical model, and solving it can obtain a more realistic programme.

At present, SO problems are widely constructed for describing the real-life conditions of transporta-
tion services (Huang, Sun, and Zhang 2022; Hao, Song, and He 2022; Xiong et al. 2018; Gkiotsalitis and
Cats 2019; Kim et al. 2022; Liu et al. 2022). For example, Schmaranzer, Braune, and Doerner (2020) pro-
posed a headway optimization model based on the simulation of urban mass rapid transit networks.
The SO problem was a biobjective optimization problem, which contained cost reduction and ser-
vice level improvement. Liu et al. (2017) designed a simulation-based optimization problem for the
two-echelon vehicle routing problem based on stochastic demands. Chavez et al. (2017) studied sup-
ply chains and constructed a biobjective SO problem that minimized the stochastic transportation
time and the deterministic freight rate. Chen et al. (2018) considered the travel time variability in a
network, and the congestion-pricing problem with reliability maximization was modelled as an SO
problem.

SO problems are tricky but common in real life engineering applications. There are some drawbacks
to solving SO problems:

(1) The computation of the objective function value of the SO is based on the sophisticated simula-
tion process (i.e. ‘Black-box’ property) and not on the analytical mathematical model. This means
that the gradient of the SO model is hard to obtain, which leads to inappropriate gradient-based
mathematical optimization methods (Winston, Venkataramanan, and Goldberg 2003).

(2) The computational cost and the number of function evaluations are high when solving the SO
problems. Therefore, metaheuristics algorithms, such as the genetic algorithm and Tabu search,
which depend on random and extensive exploration in the whole design domain, are difficult to
be applied widely (Zheng, Xue, et al. 2019).

Therefore, essentially, the SO problem is a type of expensive black-box problem. The surrogate-
based global optimization is an efficient way that (Koullias and Mavris 2014) has received increasing
attention in recent years. Common surrogate models include the response surface, Kriging model,
radial basis function, and least square support vector regression. The core of surrogate-based global
optimization is to use surrogate models to predict new-step solutions based on known sampling
points through constant iterations; in this way, a relatively optimal area can finally be determined.

2.3. Infill sampling strategy in surrogate-based global optimization

In the process of surrogate-based global optimization, the core is the infill sampling strategy. The
step is to obtain new potential sampling points to renew the surrogate models in each iteration.
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After several iterations, the optimization process may reach some important regions, such as the small
neighbourhood around the global optimum (Long et al., 2015). Over the past few decades, many infill
sampling strategies have been proposed for surrogate-based global optimization. According to the
number of sampling points in each iteration, they can be generally divided into two types: single-point
infill sampling strategy and multipoint infill sampling strategy. The single-point infill sampling strat-
egy adds only one point in each iteration. The most well-known is the efficient global optimization
(EGO), which is based on the expected improvement (El) strategy; it selects the sampling point that
has the maximized El function values based on the Kriging model (Jones, Schonlau, and Welch 1998).
The El function considers both global exploration and local exploitation, and thus, it can lead the opti-
mization process efficiently. A bumpiness-based infill sampling strategy was proposed for application
in the RBF model (Gutmann 2001), and the strategy selects the point with the least bumpiness. Apart
from this, Regis and Shoemaker (2007) constructed a candidate sampling strategy through the pre-
dicted value and the minimum distance to the known sampling points to select the best point in a
group of candidates.

However, it should be noted that the single-point infill sampling strategy is not efficient enough and
is unsuitable for parallel computing for high-performance computers. Therefore, the multipoint infill
sampling strategy, which selects multiple sampling points in each iteration, is suitable for parallel com-
puting and has received increasing attention (Haftka, Villanueva, and Chaudhuri 2016). An effective
infill sampling strategy must consider the balance between global exploration and local exploita-
tion (i.e. sampling points obtained through both global searching and local searching). According to
Chung, Park, and Choi (2018), the criterion that obtains sampling points balancing exploration and
exploitation can be divided into two types: (1) Using a searching function that contains both global
exploitation and local exploitation (such as the El function or the P-El (Xing, Luo, and Gao 2020) func-
tion) to obtain new sampling points. (2) Using multiple search functions, some only represent global
exploration (such as the prediction error function of Kriging), and others only represent local exploita-
tion (such as the prediction value function of Kriging). For example, Viana, Haftka, and Watson (2013)
considered the nature that balances the exploitation and exploration of the El function and extended
the El to more surrogate models. In this method, the prediction error of the Kriging model is shared
with other surrogate models to help construct the El. However, this method has its drawbacks: the
number of sampling pointsin each iteration will be restricted to the number of surrogate models. Dong
etal. (2016) proposed a multistart sampling strategy in reduced space based on the Kriging model. This
strategy optimizes the prediction function of Kriging using a multistart optimization algorithm. To bal-
ance exploration and exploitation, it uses the Kriging prediction error to explore unknown areas. Then,
Dong et al. (2019) proposed a surrogate-assisted global optimization using a Pareto-based sampling
strategy. This algorithm constructs a multiobjective optimization model, which contains QRS predic-
tion, RBF prediction, Kriging prediction and the Kriging error, and solves it to obtain a set of sampling
points balancing exploration and exploitation. However, the strategy has two disadvantages: (1) three
objectives represent local searching, and only one represents global searching. Hence, most of the
sampling points may pay more attention to local searching. (2) The information of global searching
is completely from the Kriging; when the sampling points are selected from more on QRS and RBF,
the balance between exploration and exploitation is fragile. Li, Bing, and Yang (2022) employed the El
function and proposed two sampling functions to obtain new sampling points balancing exploration
and exploitation. However, this method selects sampling points that pay more attention to local
exploitation and lack the means to jump out of the local valley.

In this work, a Kriging-based global optimization method using a Pareto-based multipoint sam-
pling strategy (KGO-PS) is proposed. This method provides a novel sampling mechanism for cre-
ating a unique balance between global exploration and local exploitation based on a type of
extended El function (i.e. the P-El function). The KGO-PS constructs a biobjective optimization prob-
lem based on the P-El function, whose two objective functions represent global exploration and
local exploitation, and solves it by the multiobjective evolutionary algorithms based on decompo-
sition (MOEA/D). In this way, a Pareto optimal set containing multiple candidate points balancing
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exploration and exploitation can be obtained. Then, some potential sampling points will be selected
from the Pareto optimal set according to the probability of the improvement criterion. Moreover,
reduced-domain-based local sampling and global sampling are proposed to assist the KGO-PS.
Finally, the KGO-PS is applied to 11 benchmark functions and simulation experiments based on
a real-life flex-route transit service. The optimization results demonstrate that the KGO-PS out-
performs other counterparts, which is more reliable and effective in solving expensive black-box
problems.

3. Problem description

In this article, considering the uncertainty of the passengers’ travel demands, the meeting point loca-
tions problem is modelled as a simulation-based optimization problem. Then, a Kriging-based global
optimization method using a Pareto-based multipoint sampling strategy (KGO-PS) is proposed to
effectively solve the problem. The methodology framework can be seen in Figure 1.

In this section, the simulation-based optimization model for meeting point location problem is
introduced. The proposed KGO-PS algorithm will be presented in Section 4.

3.1. Flex-route transit system with meeting points

The mode of flex-route transit with meeting points (FRT-MP) (see Figure 2) was introduced by Zheng,
Li, etal.(2019).In general, the FRT-MP system can be assumed to be a rectangle with length L and width
W. The operational mechanism of the flex-route transit service with meeting points can be described
(see Figure 2) as follows: The bus operators will deploy some meeting points that have their fixed and
suitable locations into the service area before real life applications, according to the land use, ques-
tionnaire surveys or operation planning methods. Then, the passengers can be picked up or dropped
off either at their reserved locations or at meeting points that are located in their accepted walking dis-
tance. The vehicle runs according to the base route following a rapid timetable; it must drive from one

Determine the parameters Initial sampling

of the flex-route transit =
system @

Calaulate the responses

of sampled points
r Output the optimal
Yes\ solution

-

U

Stopping condition

e g~
Apply the meeting point r— ( Simulation modell

strategy Construct the Kriging

Generate four types of
passengsers randomly

=

@ model
Plan the vehicle route Sampling points obtained by
Pareto-based multi-point sampling
@ strategy
Calculate the system @
indicator - Calaulate the responses

of sampled points

Figure 1. The methodology framework of the meeting point locations problem.
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terminal checkpoint to another after visiting all intermediate checkpoints (the black rectangle). If there
is a request outside the base route, in the case of meeting the timetable of two adjacent checkpoints,
the bus will deviate the base route to satisfy the request (the green circle). Otherwise, the request will
be rejected (red circle).

The passengers of the flex-route transit service can be divided into four types according to the
locations of their requests:

Type I: Pick-up and drop-off points, both not at checkpoints (deviated request outside checkpoints).
Type lI: Pick-up points at checkpoints, not drop-off points (deviated request outside checkpoints).
Type llI: Drop-off points at checkpoints, pickup points at (deviated request outside checkpoints).
Type IV: Pick-up and drop-off points both at checkpoints (nondeviated requests outside checkpoints).

The meeting point strategy can reduce the vehicle detour and improve the performance of the
flex-route transit services under unexpectedly high demand levels effectively. Moreover, with the
development of smart personal devices and mobile internet, passengers can complete their payments
and reservations and obtain pick-up/drop-off location information through online digital platforms. In
this background, flex-route transit services with meeting points are suitable and promising.

According to Zheng, Li, et al. (2019), during real life operations, the locations of meeting points
should be conducted appropriately. Therefore, selecting a suitable meeting point location is an
important research direction.

3.2. Simulation model of the flex-route transit system with meeting points

According to Zheng, Li, et al. (2019), the operational process of the flex-route transit service with a
meeting point strategy (FRT-MP) (see Figure 3) can be described as follows: There are several meeting
points in the service area. The passengers will reserve their pick-up and drop-off locations by the online

i

A A
® 4 A w
&2
@
Termina
Terminal A . l
A >@
" 1
A A
©
L
N o] o
1 > A
. Accepted  Rejected p
ase Route ing ;
Cheskpoint requests  requests Routing Plan  Accepted  Meeting
walking  point
distance

Figure 2. Flex-route transit service with meeting points.
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reservation system. After receiving the requests of the passengers, the reservation system plans the
transit route according to the rule of the meeting point (see Section 3.1) and the passengers’ reserved
requests. Considering that the passengers’ travel demands are uncertain in real life, a simulation model
based on Monte Carlo simulation is constructed to reproduce the FRT-MP operational process through
the following steps:

Step 1. Determine the research basis, including service area, timetable, meeting points and other
operational parameters.

Step 2. Determine whether the preset iteration number of the Monte Carlo Simulations is met. If
yes, go to Step 3; otherwise, go to Step 6.

Step 3. Approximate the demand generation and obtain passengers’ pick-up and drop-off
requests.

Step 4. Use the insertion heuristic algorithm based on the first-come, first-served policy (Qiu, Li,
and Zhang 2014; Zheng, Li, and Qiu 2018) to plan the vehicle path.

The parameters of the flex-route transit system are displayed as follows:
P: The number of checkpoints,

FS: Set of all non-checkpoints,

MP: Set of all meeting points,

PS: Set of the stations at the checkpoints, PS = {1, 2,..., P},

DT): Scheduled departure time of each checkpoint, pePS,

RP: Set of all passengers’ request stations, RP = RP1ypel URPTypell URPTypelll URPTypelv,
|[RP|: Number of all passengers’ request stations,

Tdr: Dwell time at non-checkpoints,

Tdf: Dwell time at checkpoints,

Vp: The speed of vehicle,

Viv: The speed of passengers,

SS: Set of nodes in the flex-route transit system network, SS = PSUFSUMP,
AP: Set of all accepted requests,

AS: Matrix of arcs of all possible stations, AS = SS?,

Input: Pick-up locations,

% Drop-off locations

Passengers

7
Demand - U %

Reservation system

User
Interface

Output: Accept/Reject,
Pick-up time and
location, Drop-off time
and location Accept/
Reject

Plan vehicle route according
to the rule of meeting points,
and passengers’ reseraved

DDDDD E-i 3:;:;:: ‘ / “ Vehicel requests
- S lan
[ o o | route p

Figure 3. The operational process of the flex-route transit system with meeting points strategy.



1288 (&) M.LIETAL

djj: Distance from node i to node j, Vi, j € S5,

xj:xj = 0,1, if the request:itojis accepted, x; = 1; else, x; = 0,
yiryi = 0, 1,if the nodeiis accepted, y; = 1;else, y; = 0,
Px: pick-up time of request k,

dy: drop-off time of request k,

T;: Vehicle riding time in a trip,

M: The fleet size of the flex-route transit system,

Op: Operating cost per vehicle,

K: All passengers’ walking time,

Wg: Walking time cost per passenger,

A: All passengers’ waiting time,

Wa: Waiting time cost per passenger,

R: All passengers'’ riding time,

Whr: Riding time cost per passenger,

I: All passengers’ idle time,

Wi: Idle time cost per passenger.

Then, the route plan model can be defined as follows:

Min:OpxMxT, + Wk K+WaxA+WrxR+ W, x| (1)
Subject to:
Tr = Z Xijdij/Vp 2
ijePSUFSUMP
K=" " xjdj/Vw 3)
icAP jeAPUPS
A= (Zy;*Tdr—i—Zy;*Tdf) (4)
ieFs iePs
R= Z(dk = Px) (5)
keAP
I= ) DT,—Ty, (6)
peP—1
ZXU:1 ZXﬂ =0 (7)
jess jess
ZXP]'=O Z)(jp: 1 (8)
jess jess
Z Xjj = Z Xji = Yi 9)
ijeSs/{1,P} ijeSs/{1,P}
Xij=0 ViesS (10)
DTp—Tip 20, VpePS (11)

The formulation (1) is the system evaluation indictor in this trip. The formulation (2-6) is the vehicle
riding time, passengers’ walking time, waiting time, riding time, and idle time. The formulation (7) rep-
resents the outgoing/incoming degree of the first checkpoint are 1/0. The formulation (8) represents
the outgoing/incoming degree of the final checkpoint are 0/1. The formulation (9) represents: if the
node i is accepted, its outgoing/incoming degree are both equal to 1; else, they are equal to 0. The
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formulation (10) represents there is no self-connection of the node i. The formulation (11) is the core
constrain, which represents the vehicle needs to follow the timetable of each checkpoint.

Step 5. Obtain specific travel data for each passenger and vehicle, and then return to step 2:
Step 6. Calculate the total system performance indicator:

N
F=) (OpxMsxTy+ WK+ WaxA+ W xR+ W )/N (12)
1=1

where F is the performance indicator of the flex-route transit system, which represents the
expected cost of the system under different travel demands (Zheng, Li, et al. 2019). N is the pre-
set number of travel demand generations (i.e. The number of iteration/Monte Carlo Simulation),
which is set as 10,000 in this article. O is the operating cost per vehicle, M is the fleet size of the
system, and T, is the vehicle riding time of the flex-route transit service in the /-th iteration. Wy is
the walking time cost per passenger, and K is the walking time of all passengers in the /-th itera-
tion. Wy is the waiting time cost per passenger, and A; is the walking time of all passengers in the
I-th iteration. Wk is the riding time cost per passenger, and R, is the riding time of all passengers
in the /-th iteration. W is the idle time cost per passenger, and /; is the idle time of all passengers
in the /-th iteration.

According to Koffman (2004), most flex-route transit systems generally have a long headway over
half an hour. Hence, it is worth noting that it is more practical for passengers using flex-route transit
services to book specific trips based on the transit timetable instead of specifying a narrow time frame
for pick-up and drop-off services (Zheng, Li, et al. 2019).

Moreover, some adopted assumptions in previous studies (Qiu, Li, and Zhang 2014; Zheng, Li, and
Qiu 2018; Zheng, Li, et al. 2019) were employed in this study: (1) To facilitate analysis, only one of
the up and down directions is considered. (2) Passengers will arrive on time according to the pick-up
time set in advance by the reservation system without considering vehicle delay. (3) Passengers who
are rejected walk directly to their destination or walk to the nearest checkpoint. (4) The vehicle drives
straight in the X or Y direction.

3.3. Simulation-based optimization problem

The meeting point locations problem, considering the uncertainty of passengers’ travel demand, can
be described as follows: In the service area, some meeting points are preset in advance, and their
locations are fixed with station boards. The passengers’ requests are unknown before they make a
reservation with the reservation system. After the requests are submitted, the reservation system will
plan the vehicle route according to the meeting point locations and passengers’ requests. Then, the
system cost can be calculated. Because the meeting point location optimization for planners appears
before the transit operation, considering the uncertainty of the passengers’ demand, we need the opti-
mal meeting point locations, which can lead to the expected system cost minimization under different
massive reservation request scenarios.

Here, the simulation-based optimization model of determining optimal meeting points is intro-
duced. The objective function is the expected system cost function (F). The constrained condition is
the expected passenger acceptance rate (RE). The simulation-based optimization model is defined as:

N
min : F(MP) = Y " (Op % M x Ty + Wi # K + Wa x Aj + Wa % Ry + Wy [ /N (13)
=1

st. RE=e (14)
Design Variables : 0 < MPyy, < L;0 < MPy, < W;m € MP (15)
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Here, F is the expected system cost function, which is calculated through the simulation model in
Section 3.2. RE is the expected rejection rate of the flex-route transit service, which is also calculated
through the simulation model in Section 3.2. ¢ is a threshold, it is set as the expected rejection rate
value calculated through the simulation model, which is under the condition that the meeting points
locations are unoptimized and randomly generated. The MPy, and MPypare the design variables of
the simulation-based optimization problem. MPy, is the coordinate pair of the meeting points along
the X axis, and MP,is the coordinate pair of the meeting points along the Y axis. L is the length of the
service area of flex-route transit, and W is the width of the service area of flex-route transit. MP is the
vector of the meeting points.

4, Solution approach

The meeting point location problem with uncertainty is modelled based on the Monte Carlo simula-
tion, which is a simulation-based optimization (SO) problem. The SO is a type of expensive problem
(i.e. The calculations of objective functions are computationally time-consuming). The Kriging-based
global optimization (KGO) method is efficient in solving expensive problems. In this article, a Kriging-
based global optimization method using a Pareto-based multipoint sampling strategy (KGO-PS) is
proposed to solve the SO problem. The process of the KGO-PS is introduced as follows:

4.1. Kriging and P-El function

The Kriging model is a type of surrogate model that is good at modelling multimodal and nonlinear
problems. The specific details can be seen in (Sacks et al. 1989).

The expected improvement (EI) function is the most famous searching function based on the
Kriging model and was first proposed by Jones, Schonlau, and Welch (1998). After obtaining a Krig-
ing model, we suppose the minimal value of all evaluated points is ymin. The expected value of an
unobserved point relative to ymin can be written as:

_ o Ymin — Y(X) Ymax _y(X)
EUOOT = [Ymin — YOO)IF <7S - ) s0f (7@ ) 16

where x is a sampling point in the design space. y(x) is the Kriging predicted value of sampling point
x, and s(x) is the predicted Kriging standard deviation of sampling point x. ® and ¢ are the cumulative
distribution function and probability density function of the standard normal distribution, respec-
tively. Based on the El function, Xing, Luo, and Gao (2020) proposed an extended version of El, which
is the P-El function. The P-El function adds a parameter P to the traditional El function to enhance the
searchability for other peaks of the El function. The P-El is shown as follows:

Ty Ymin — y(X) Ymin — Y(X)
EplICO] = [(Ymin — y())]1® <7P 500 ) +Pxs(X)g <7P T ) (17)

where P is an artificially predefined parameter and is more than 0, which is a drawback of the P-El
function because its suitable value has not been proven by strict mathematical deduction. Therefore,
referring to the test example of Xing, Luo, and Gao (2020) and their conclusion, the values of parameter
Pin this article are defined as 1, 2 and 3.

DuetoP > Oands(x) > 0,learning from the deduction of Feng et al.(2015) and Sobester, Leary, and
Keane (2005), some features of the P-El function can be concluded, and the P-El function is composed
of two terms:

_ o Ymin — Y(X)

P1 = [(Ymin — yOO)IF (7’)*5()() ) (18)
_ Ymin — Yy ()

Py =P xs(x)f (7'0*5()() ) (19)
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The first term P4 reflects the local exploitation. Conversely, the second term P, reflects global explo-
ration. The proving process is displayed in Appendix A. Therefore, using the P-El function for global
optimization is efficient because the P-El balances both global exploration and local exploitation. How-
ever, the P-El function gives equal weight to both exploration and exploitation. Hence, it may only
carry out either local searches or global searches sometimes. In the ‘Appendix B’ section, an example
is applied to demonstrate the disadvantage of the P-El function and display our motivation.

4.2. Pareto-based multipoint sampling strategy

For designing a Kriging-based global algorithm, sampling points that balance global exploration and
local exploitation can be considered promising (Zhan, Qian, and Cheng 2017a). To end this and tar-
get the disadvantage of the P-El function, this article proposes a Pareto-based multipoint sampling
strategy.

4.2.1. Sampling points obtained by biobjective optimization
First, the concept of ‘Pareto optimality’ must be introduced, considering a biobjective optimization
problem:

min: f = {fi(x), LX)} (20)
subjectto : x = {x', x%, ..., x"} 21

Then, considering two vectors, x' and x2, if the following condition is met, it can be concluded that X2

dominates x' or x? < x2.

fix) > fixd), Vi ix) > fix®), Fii=1,2 (22)

If there are no solutions that can dominate solution x in the whole design space, solution x can be
called the Pareto optimal solution. A set of Pareto optimal solutions is called the Pareto optimal set,
and their corresponding objective function values compose the Pareto front. The aim of multiobjective
optimization is to obtain a reliable Pareto optimal set.

Based on the above, a spontaneous idea is that by solving a biobjective optimization problem,
whose objectives represent global exploration and local exploitation, a Pareto optimal set contain-
ing candidate sampling points with different weights between exploration and exploitation can be
obtained. In this work, the biobjective optimization problem (see Formulations 25, 26 and 27) is
constructed based on P-El functions. Consider the following six search functions:

_ o Ymin — Y(X) _

P] —_ [(J/mln Y(X))]F < P % S(X) ) 7 P - 1/ 21 3 (23)
_ Ymin = Y () _

Pz_P*s(x)f< P50 ), P=1,23 (24)

When the values of P are different, P; and P, with P = 1,2, 3 will have idiographic advantagesin solving
different problems. Generally, selecting the most suitable searching function for a particular problem
is difficult. Because of the black-box properties of most simulation-based problems, the problem char-
acteristics are difficult to capture in advance. A way to solve this problem is the integrated method (Shi,
Xie,and Wang 2013), which aggregates different searching functions into one integrated function. The
aim of the integrated method is to consider and balance all search functions that are aggregated and
implement search capabilities for each aggregated search function as much as possible. In this way, the
impact of selecting an unsuitable search function can be reduced. In this work, the integrated method
in the work (Li, Bing, and Yang 2022) is employed. The two integrated objectives and the biobjective
optimization problem are shown as follows:

_ 1 3 _ o Ymin — Y (%)
O = g In (ZP:1 exp ( [(Ymin — y(x))1P < P xs(x) ))/Q) (25)
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Figure 4. The process of selecting sampling points through biobjective optimization.

1 P=1 B Ymin — Y(X)
0, = p In <Z3 exp ( P % sGOf (7/3 500 ))/q) (26)

min : {Oq, 0>} (27)

where g is a control parameter and adopted the default value in (Li, Bing, and Yang 2022). Due to the
monotonic increase in exponential and logarithmic functions, minimizing O requires that each P,
(P =1, 2, 3) be as large as possible; similarly, minimizing O, requires that each P, (P = 1, 2, 3) be as
large as possible. Therefore, Oy represents local exploitation, and O, represents global exploration.

After the biobjective optimization problem is constructed, the multiobjective evolutionary
algorithm based on decomposition (MOEA/D) (Zhang and Li 2007) is employed to solve it. The details
of the MOEA/D can be seen in Appendix C. Then, because the two extreme points of the Pareto
front represent exploration and exploitation, to balance exploration and exploitation, they will be
first selected as sampling points. Finally, the probability of the improvement (PI) function (Jones
2001) is employed as the criterion to select new sampling points from the remaining candidates. The
formulation of the Pl function is shown as follows:

Pl=F (L“ e (X)) (28)
s(x)

The Pl function has a concrete practical meaning; it represents the probability that the objective func-
tion value of an unobserved point is better than the current optimum. Hence, it is usually employed
to select potential sampling points. The sampling process is shown in Figure 4:

4.2.2. Space-reduction-based greedy sampling
To further mine more precise optimal solutions, a space-reduction-based greedy sampling strategy is
proposed.
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The space reduction technology obtains a trust region that contains possibly potential sampling
points (Dong et al. 2016; Dong et al. 2018b; Gu 2021); in this way, the cost computing resource can
be decreased, and the search efficiency can be improved. Generally, the reduced space (Dong et al.
2018a) is a neighbourhood of the current best point (see formulation 29-30; Figure 5) and/or a small
hypercube (see formulation 31-33; Figure 6) composed of several promising points.

[xbest; — e, xbest; + e] N [I1by,ubq]
[xbest; — e, xbesty + e] N [1b5, ubs]
[xbest3 — e, xbest3 + e] N [Ib3, ubs]

oxX = (29)
[xbesty_1 — e, xbestg_1 +el N [lbg_1,ubg_1]
[xbesty — e, xbesty + €] N [Ibg, ubgl
& = & * (ubi — Ibi) (30)

where xbest is the best sampled point. d is the dimension of the design space. Ib; and ub; are the lower
and upper boundaries of the i-th dimension. § is a threshold, which is small; it is set as 0.05 in this article,
according to sensitivity analysis.

point1 rank1 pointzranm pointdrank1 Yrank1

oph point; rank2 pointzrankz . pointdrankz Yrank2
Point . . . . (31)

point1 rankM pOintzmnkM pointdrankM YrankM
LB; = min(point;/®™ 1, point; ™™, ..., point®™M) i =1,...,d (32)
UB; = max(point; ™™, point ™2, ..., point; ™M) i =1,...,d (33)
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where Point®©PM is the set composed of the top M most expensive samples, and M is set to 1/3 in this
article. LB; and UB; are the lower and upper boundaries in the i-th dimension of the reduced space.

After obtaining the reduced space, two unevaluated points with the smallest Kriging prediction
value are sampled in the two reduced spaces mentioned above. Then, the two points are regarded as
new sampling points. Its pseudocodes are shown below:

Algorithm 1. Space-reduction-based greedy sampling

Input: The Kriging trained through all expensive samples, Expensive samples set: S = {S1, Sy, ..., Sk} and their corresponding
responses set: Y = {Y1,Y,..., Yk}, The dimension d of design space Q, The lower and upper boundaries [Ib;, ub;] of the i-th
dimension.

Output: two new sampling points [localy, local,] through local search.

(1) Obtain the current best responses: Y min in the set Y and its corresponding samples: xbest.

(2) Construct the reduced space 1: neighbourhood of the current best point.

Construct the reduced space 2: hypercube composed of several promising points.
Based on reduced space 1, minimizing the Kriging prediction value:
Min:y(x) = fT0)B + T OR™1 (Y — FB)
Obtain the new sampling point: local;.
(4) Based on reduced space 2, minimizing the Kriging prediction value:
Min:y(x) = fT(x)B + r" )R~ (Y — FB)
Obtain the new sampling point: local;.
(5) Return [local, local,].

4.2.3. Exploring points with high uncertainty in promising regions
When the optimization process becomes trapped in a local valley, it will result in unnecessary costs.
One of the approaches is to increase the diversity of sampling (selecting high-uncertainty points).
In this section, to increase the diversity of sampling and explore the sparse area, points with high
uncertainty are sampled. To avoid unnecessary computing costs, the above process is based on the
promising region, which is defined as the hypercube in Section 4.2.2.
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A general condition for determining whether the optimization process becomes trapped in a local
valley is that the best solution in the n-th iteration is almost equal to the best solution in the (n-n1)-th
iteration. Hence, in this article, when the following global search condition is met, the optimization
process can be considered as a local valley:

[Best(n) — Best(n — 5)] =d (34)

where n is the current number of iterations of the algorithm and Best(n) is the best function value
evaluated in the n-th iteration. § is a threshold, in this article, which is small, § = 0.005.

Finally, two unevaluated points with the largest Kriging prediction error are sampled in the trust
reduced space, and the two points are regarded as new sampling points. Its pseudocodes are shown
below:

Algorithm 2. Exploring points with high uncertainty in promising region

Input: The Kriging trained through all expensive samples, Expensive samples set: S = {S1, S, ..., Sk} and their corresponding
responses set: Y = {Y4, Y, ..., Yk}, The dimension d of design space Q, The lower and upper boundaries [Ib;, ub;] of the i-th
dimension, The current number of iteration: n, The best function value evaluated in the n-th iteration: Best(n).

Output: two new sampling points [globaly, global,] through global search.

If Best(n) — Best(n—>5) < 0.005
(1) Obtain the current best responses in the set Y: Y in, and its corresponding samples: xbest.
(2) Construct the trust reduced space: hypercube composed of several promising points.
(3) Based on the trust reduced space, sampling 10000 cheap points in the reduced space CP = ... {cp1, Py, .- , CP10000}
using the Latin hypercube sampling.
(4) Obtain the top two points: global; and global, with maximized Kriging error in set CP.
(5) Return [globaly, global,].
End

4.3. The overall optimization algorithm

In this section, the flowchart (see Figure 7) and process of the proposed KGO-PS algorithm are given:

Step 1: Initial sampling using the design of the experiment (DOE) methods. The sampling set is S:
{51,..., S2,..., Sk}, and the objective function value of each point Y is evaluated: {Y;,...,
Yo, ..., Yk}

Step 2: Determine whether the stopping condition is reached. If yes, output the current optimal
solution. If not, go to Step 3.

Step 3: Construct the Kriging model based on the set Sand Y.

Step 4: Solving the biobjective optimization problem:

. 1 > Ymin — Y(X)
Min : {q In <; exp (—[(ymin —y(x)1® (P*s(x)))/q> A

1 =l Ymin — Y(X)
p In (Xs:exp ( P x s(x)f( ) ))/q
Step 5: Select N new sampling points SP = {sp1, spa, ..., spn} from the Pareto optimal set obtained
in Step 4.
Step 6: Local search in the reduced space: {local, local,}.
Step 7: Determine the global search condition; if yes, global search in the reduced space: {Globals,
Global,}.
Step 8: Add SP, {local;, local,}, and {Global;, Global,} into S.
Step 9: Delete the repeated points in set S.
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Figure 7. The flowchart of the KGO-PS algorithm.
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Step 10: Evaluate the objective function value of the newly added points in S.

Step 11: Return to Step 2.

4.4. Numerical experiments to test the KGO-PS method

To verify the effectiveness and superiority, the KGO-PS is tested on 11 representative benchmark func-
tions, including 2 lower-dimensional functions and 9 higher-dimensional functions. The details of all
benchmark functions are shown in Table 1, and the formulations can be seen in the ‘Appendix D’
section. Then, several well-known algorithms, including EGO (Jones, Schonlau, and Welch 1998), EGO-
MO (Feng et al. 2015) and MISK (Li, Bing, and Yang 2022), are employed for comparison with KGO-PS.
The EGO is the most widely used Kriging-based global optimization algorithm, which is commonly
applied as a competitor in comparisons. The EGO-MO and MISK are two recently extended versions
of EGO that consider balancing global exploration and local exploitation. Moreover, the experimental

preparation is shown below:

(1) The number of initial samplings is set to 3xd + 2 for each algorithm by using the Latin Hypercube

Sampling (LHS) method, where d is the dimension of the benchmark function.



TRANSPORTMETRICA B: TRANSPORT DYNAMICS . 1297

(2) To avoid unrepresentative results, 10 independent runs are applied. The optimization results are
the mean values of 10 runs in this article.

(3) In these tests, the stopping condition is set to all testing algorithms: Fix the maximum number
of function evaluations (NFE), and compare the mean and variance of optimal solutions (OS). The
maximum NFE is set as 300 in lower-dimensional functions and 500 in higher-dimensional func-
tions. The mean OS represents the optimization precision, while the variance OS represents the
optimization robustness.

(4) The number of new sampling points NSPis set as 3 in this work, according to the sensitivity analysis
method.

The optimization results are shown in Table E1 (see Appendix E).

In Table E1, in terms of the mean OS, the KGO-PS is considerably better than the EGO algorithm
on all benchmark functions. In the variance of OS, the KGO-PS also has a smaller variance. The rea-
son for this is that although the EGO algorithm can balance global exploration and local exploitation,
it gives the same weight to them both. The El function can be regarded as a special condition of P-
El (P = 1); hence, the balance between exploration and exploitation is fragile. In higher-dimensional
problems, it is obvious that the KGO-PS has much better results because the EGO is not good at solving
high-dimensional problems. In summary, the KGO-PS is more effective and reliable in solving highly
multimodal and nonlinear problems than the EGO. Moreover, the KGO-PS is based on a multipoint
sampling strategy, which is more in line with the needs of high-performance and multicore com-
puters. Compared with the EGO-MO algorithm, the KGO-PS shows strong dominance in almost all
benchmark functions, except for the SSF function. In terms of the mean OS, the KGO-PS shows sig-
nificant precision in the F1, AK, ED10, ED12, SS, SF12, H6, F16, TF and PAF functions. This is because
the EGO-MO lacks a strategy that can help it proceed with a local search in a promising region. Facing
highly multimodal and nonlinear problems, it is powerless. In the variance of OS, the KGO-PS is also
smaller in almost all problems. This means that the KGO-PS has advantages in stability and is more
reliable.

Compared with the MISK algorithm, the KGO-PS shows strong dominance in almost all benchmark
functions, except for the PAF function. In mean OS, the KGO-PS shows significant precision in F1, AK,
ED10,ED12,SS, SF12, H6, F16 and SF20 functions. This is because the MISK lacks a strategy that can help
it proceed with alocal search in a promising region. Facing highly multimodal and nonlinear problems,
it is powerless. In the variance of OS, the KGO-PS is also smaller in almost all problems. This means that
the KGO-PS has advantages in stability and is more reliable.

In summary, compared with other algorithms, the proposed KGO-PS can obtain more pre-
cise optimal solutions with the same computing costs and stronger robustness. Hence, it can be
concluded that the KGO-PS is more effective, which may be more suitable for solving real life
problems.

Table 1. The details of the benchmark functions.

Function Optimum Design space Dimension
F1 -2 [—1,1] 2
Ackley (AK) 0 [-30,30] 2
ED10 0 [-5,5] 10
ED12 0 [—1,1] 12
SS 0 [-2,2] 10
SF12 0 [-1,1] 12
HN6 —3.322 [0, 1] 6
Trid 6 —50 [—36, 36] 6
PAF —45.8 [2.1,9.9] 10
F16 25.875 [—1,1] 16

SF20 (SSF) 0 [—10,10] 20
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Table 2. Parameter values of Line 646.

Parameter Description Value
L The length of the service area 10 miles

w The width of the service area 1 mile
M The fleet size of the flex-route transit system 1
C The number of checkpoints 3
D Unexpectedly high-demand level 25 passenger/trip
Vp The speed of the vehicle 25 miles/h

Viw The speed of the passengers 3 miles/h

Wk Walking time cost per passenger $25/passenger/h
Wy Waiting time cost per passenger $15/passenger/h
We Riding time cost per passenger $30/passenger/h
w; Idle time cost per passenger $20/passenger/h
Op Operating cost per vehicle $60/vehicle/h
Tdr Dwelling time at on-demand request stops 0.3 min
Tdf Dwelling time at checkpoints 1 min
Tunit The predefined trip time between two consecutive checkpoints 20 min

r The predefined single-trip time 40 min
B1/B2/B3/Ba The proportions of four types of passengers 0.1/0.4/0.4/0.1
Duwalking Accepted walking distance of passengers 0.5 mile

5. Case study

In this section, the KGO-PS is applied to solve the simulation-based optimization problem in Section 3.
To display the effectiveness of KGO-PS, some representative algorithms are selected as competitors,
including particle swarm optimization (PSO), which is a typical metaheuristic; efficient global optimiza-
tion (EGO), which is the most well-known Kriging-based optimization algorithm and is widely used
in engineering applications; EGO-MO and MISK, which are recent Kriging-based global optimization
algorithms using a multipoint infill sampling strategy.

5.1. Parameter values in the simulation model

The simulation model of the flex-route transit service is performed through MATLAB 2020a and Line
646 in Los Angeles (see Figure 8). It was generally applied as a case study in previous works (Quadri-
foglio, Dessouky, and Palmer 2007, 2008; Qiu, Li, and Zhang 2014; Zheng, Li, and Qiu 2018; Zheng, Li,
et al. 2019). When it is employed as a case study, Line 646 is modelled hypothetically (see Figure 9).
The flex-route transit system is composed of three checkpoints, one base route, a single service vehi-
cle, and a service area with length L and width W. The parameters in the simulation model are given
by Zheng, Li, et al. (2019) and can be seen in Table 2:

For comparison, the value of system cost function of flex-route transit system with unoptimized
meeting points are set as the initial value. To avoid the contingency of the initial value, the results
are calculated as the average simulation values of flex-route transit system, whose meeting points are
randomly generated with 10 times. The calculated results are F = 366.5, while RE = 35.73%.

According to Wu et al. (2021), the dimension of the expensive black-box problem is 10-30, and it
can be regarded as a difficult high-dimensional optimization problem. Therefore, / should not be a
number that is too large. In this article, / is set to 10, and the optimization model has 20 variables.

5.2. Optimization results

The optimization results can be seen in Table 3, and the optimization processes of PSO, EGO, MSIK,
EGO-MO and KGO-PS are shown in Figures 10-12. In the actual problem, the stopping condition
of each algorithm is set to NFE > NFEna. For EGO, MISK and KGO-PS, the NFEnax is 500. Because
metaheuristics for expensive black-box problems generally require more NFE; its NFEmax is set to 1000.
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Figure 8. The schematic diagram of Line 646.

In Figure 10, the best values of PSO are taken over by EGO and KGO-PS after approximately 20
NFE. The searching process of PSO continues to gather at one value for a long time because PSO is
a method of unordered search; it keeps going in the direction of letting it down. When it is in a local
valley, it jumps out with unacceptable NFE. Hence, it is unsuitable for expensive black-box problems
due to too many expensive computing resources. Compared with PSO, the EGO and KGO-PS can jump
out the local valley using less NFE because they explore the design space based on the Kriging infor-
mation and can make a unique balance between global exploration and local exploitation. Compared
with EGO, KGO-PS can obtain better values after approximately 100 NFE. In addition, the consumed
NFE that KGO-PS needs when it continues to gather at one value is less than EGO, which means that
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Figure 10. Iterative results based on NFE (PSO, EGO and KGO-PS).

the ability of KGO-PS to jump out of the local optimal solution is stronger than EGO. This is normal
because the El function can be regarded as a special P-El, and sometimes its balance between explo-
ration and exploitation is fragile, as mentioned above. The KGO-PS can explore the whole design space
completely and find better solutions more easily.
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In Figures 11 and 12, the MISK obtains its best values in approximately 70 NFE. Unfortunately, the
MISK will become trapped in a local valley from 70 NFE to 500 NFE. This is because the MISK will select
new sampling points that have higher weight on the local exploitation and less weight on the global
exploration and lacks a strategy that helps it jump out of the local valley. This condition also occurred
in EGO-MO. Compared with it, the KGO-PS has a stronger ability to jump out of the local valley. It will
not last long at a value, which means that the KGO-PS can make a better balance between global
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Table 3. The optimization results of the simulation experiments.

Algorithm Optimal solution Rejection rate NFE Running time
Initialization without optimization 366.5 35.73% - -

PSO 3304 31.69% 1000 32.2h
EGO 3247 26.09% 500 16.7h
KGO-PS 317.6 24.66% 500 16.7h
MISK 3241 29.08% 500 16.7h
EGO-MO 320.1 28.78% 500 16.7h

optimizaed
meeting points

service area @ accepted requests

A unoptimizaed Kt .
meeting points ;

' accepted walking

g B checkpoints
«___- distance

Figure 13. The influence of meeting point locations.

exploration and local exploitation. Therefore, the KGO-PS can efficiently solve expensive black-box
problems.

In Table 3, experiencing 1000 NFE, the PSO can obtain the best value: 330.4. While experiencing
500 NFE, the KGO-PS, MISK, EGO-MO and EGO can obtain the best values: 317.6,324.1,320.1 and 324.7,
respectively. This demonstrates that the KGO-PS can obtain better optimal solutions using the same or
fewer computing resources, which proves that the KGO-PS is more suitable for solving expensive black-
box problems in real life engineering applications. Compared with the initial solution, the KGO-PS can
reduce the system cost by 12.8%. Moreover, it can also reduce the rejection rate of the flex-transit
system to approximately 31%, which will attract more passengers. Therefore, it is necessary to optimize
the meeting point locations and effectively improve the performance of the flex-route transit services
under unexpectedly high-demand levels.

5.3. The influence of meeting point locations on the FRT-MP system performance

The flex-route transit with meeting points (FRT-MP), which was proposed by Zheng, Li, et al. (2019),
is an improved mode of the traditional flex-route transit. The meeting point location is an important
factor that influences the FRT-MP performance. In this section, the influence is displayed in detail (see
Figure 13):
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The system performance metric is composed of five parts (the cost of vehicle running, passengers’
riding time, walking time, waiting time and idle time). Then, the meeting point location influencing
the five parts will be demonstrated as follows:

The cost of vehicle running and passengers’ riding time is mainly dependent on the time of vehicle
running. In Figure 13, it can be seen that the optimized meeting points (the orange triangle) can reduce
the vehicle detour effectively. Hence, the vehicle running distance is shorter. Without considering the
road resistance, the vehicle running time of optimized meeting points is less than that of unoptimized
meeting points (the yellow triangle). For the walking time, the optimized meeting point can be located
at a suitable location, which can reduce the passengers’ walking time. For the waiting time, the opti-
mized meeting points (the orange triangle) can effectively reduce the vehicle detour. In real life, it can
improve the on-time performance of vehicles and reduce passengers’ walking time. For the idle time
(i.e. the extra waiting time if the vehicle arrives at checkpoints before the timetable), although the
optimized meeting points will increase the idle time slightly (i.e. the vehicle running time is saved, and
the vehicle can arrive at the checkpoints in advance), the increase in idle time cost is far less than the
reduction in other costs (vehicle running, passengers’ riding time, walking time and waiting time).

In summary, suitable meeting point locations can considerably enhance the performance of the
FRT-MP system, which must be optimized.

6. Conclusion

As an on-demand transportation service, flex-route transit services are promising for promoting sus-
tainable societal development. In this work, the optimal locations of meeting points are studied to
improve the performance of flex-route transit services under unexpectedly high-demand levels. By
using the simulation model to reproduce the complex operating process of the flex-route transit
services, the meeting point location selection is modelled as a simulation-based optimization (SO)
problem. Then, a Kriging-based global optimization algorithm using a Pareto-based multipoint sam-
pling strategy (KGO-PS) is proposed to efficiently solve the SO problem. Finally, numerical experiments
and simulation experiments based on real life Line 646 have proven that the KGO-PS is more effective,
reliable and brief than other well-known surrogate-based global optimization algorithms. The main
contributions of this paper are summarized as follows:

(1) The key parameters of the meeting points strategy (i.e. the optimal locations of meeting points)
is studied, in this way, the performance of flex-route transit services under unexpectedly high-
demand levels can be improved.

(2) Considering the undeterministic passengers’ travel demand, the meeting point location problem
is modelled as a simulation-based optimization model based on Monte Carlo Simulation. In this
way, more realistic solutions can be obtained.

(3) To address the disadvantages of P-El functions, the KGO-PS algorithm is designed. It provides a
novel mechanism that realizes the balance between global exploration and local exploitation.
Moreover, compared with other methods, it is more effective and reliable.

However, the current work still has some limitations: (1) Solving high-dimensional expensive black-
box problems is an acknowledged challenge to surrogate-based optimization algorithms. In this work,
this problem also constrained the number of meeting points. Future work willimprove the algorithm’s
performance under higher-dimension ( > 10-30) problems. (2) The proposed algorithm is focused on
solving expensive black-box problems with simple constraints or without constraints. In the future, it
will be extended to solve expensive black-box problems with complex constraints.
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Appendices

Appendix A. The derivation of the properties of P; and P>
As Formulas (18) and (19) shown:

_ o Ymin — Y(X)

P1 = [(Ymin — y(x)]1® (7P* ) > (35)
_ Ymin — y(X)

Py =Pxs(x)¢p <TS(X)) (36)

Learning from Zhan, Qian, and Cheng (2017b), the search property of the second term of the traditional El function is
mainly dependent on s(x), and the influence of y(x) can generally be overlooked. The second term of El can be regarded as
a special condition of P, when P = 1. Observing the formulation of P,, the parameter P will further increase the influence
of s(x) compared with the second term of the traditional El function. Therefore, the influence of y(x) is approximately
overlooked in this article. Therefore, the partial derivative of P, with respect to s(x) is given as:

APy Ymin — y(X) Ymin =y ) Ymin — y()
a0y [‘p( P s(o) ) " (( P s(x) ) ) w( Pxs(x) )} e
Dueto0 < ® < 1,0 < g and s(x) > 0, itis obvious that:
UG G8)
(s(x)

This means that P; is positively correlated with s(x). Therefore, maximizing P, requires s(x) to be as large as possible; in
other words, it searches points with high uncertainty. P, represents global exploration.
Then, the partial derivatives of Py with respect to y(x) and s(x) are given as:

a(P1) - —® (,Vmin *y(x)) Ymin — y(X) (Ymin *y(X)>
= — * (39)
a(y(x)) P x s(x) P % s(x) P x s(x)
a(P1) _ (Ymin —,V(X))z « (Ymin —)/(X)> (40)
As(x)) P s(x)xSs(x) ¢ P x s(x)
Dueto0 < ® < 1,0 < ¢,and s(x) > 0, it is obvious that:
a(P1) - @1)
a(s(x))

This means that Py is negatively correlated with s(x). Since Kriging is a type of interpolation model, at least one point whose
prediction value y(x) is less than or equal to ymin exists. When maximizing P;, we only need to consider the following
condition: y(x) < ¥min because if y(x) > Ymin, P1 < 0; if y(x) < ¥Ymin, P1 > 0. Under this condition:

a(P1)
<

a(y(x))
Therefore, maximizing P; requires that y(x) and s(x) be as small as possible. In other words, the point maximizing P; has

small prediction values and low uncertainty, and P; places emphasis on exploiting the predictor and no emphasis on
exploring points that are uncertain. Maximizing P; represents local exploitation.

(42)

Appendix B. An example to illustrate the disadvantage of the P-El function
Consider a function:
y= (6x —2)%sin(12x —4), 0 <x <1 (43)

The Kriging model is constructed by six points (0, 0.1, 0.2, 0.3, 0.4, 1), and the new sampling point is obtained by
maximizing the P-El function, Py, P,. For illustrative purposes only, here, the value of parameter P is set to 1.
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Figure A1 shows the Kriging prediction function (the red line) constructed by the six points and the real function
(the purple line). Figure A2 gives the P-El, Py, P, function curve (the red, purple and blue lines) and points obtained by
maximizing the P-El, Py, and P, functions. It is obvious that in this process of obtaining new sampling points, the point
obtained by maximizing the P-El function is the same as the point obtained by maximizing the Py function. Therefore,
unfortunately, in this example, it can be concluded that the P-El function is only for local exploitation while ignoring
global exploration.

Appendix C. Multiobjective evolutionary algorithm based on decomposition
(MOEA/D)

MOEA/D is one of the most popular algorithms for solving biobjective optimization problems (Zhang and Li 2007). The
MOEA/D basis is the decomposition strategy. The decomposition into multiple scalar optimization subproblems refers
to: instead of processing as a whole, decomposing one into a single-objective optimization problem. The decomposition
is achieved through the polymerization method. Due to its good performance in nonlinear problems, the Chebyshev
method is the most commonly used method, which can be seen as follows:

min : g" (x|, 2) = max{Ai|fi(x) — zi[} (44)
st. xeD (45)

where tch represents the Chebyshev decomposition method and z is the reference point, z = (21,23 ... ., zm)'. For each
i=1,2...,m.zi = minf; (x), m is the target number of the multiobjective optimization problem. f; is the i-th objective
function of the multiobjective problem. The setting of the reference point can make the population distribution more
uniform and improve the algorithm effect.

The pseudocode of MOEA/D is summarized in Algorithm 3:

Appendix D. The benchmark function used in the numerical experiments

1. F1 function

y= X12 4 x22 — cos(18x1) — cos(18x7) (46)
2. Ackley (AK) function
y =20 + exp(—20 # exp(—0.2 * (0.5%12 + 0.5x,2)>°) — exp(0.5c08(27x1 + 27x2)) (47)
20 T T T T
15+ — Kriging prediction

= Original function
X Initial sampling points

10

_10 1 1 1 1
0 0.2 0.4 0.6 0.8 1

Figure A1. Kriging and original function of the example function.
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- PE| function

0.8 "'|==———P1 function ! !
— P2 function
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X Maximizing P1
A Maximizing P2
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0.2
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Figure A2. Sampling points obtained by maximizing P-El, P; and P; (i.e. To facilitate identification, each function curve has been
shifted up or down).

Algorithm 3. MOEA/D

Input: a multiobjective optimization problem: min: f1(x), f2(x) ... , fm(x)
A stop condition: the maximum number of iterations Gen.

The size of population: N )

A set of weight vectors: A = (A}, ,Aj’.): i=12..,Nj=12..,m
Number of neighbours: T

Output: Approximate Pareto Frontier: EP.

1. Initialization

2. suppose EP = () (The {J represents an empty set).

3. Hartmané (H6) function

4 6
y=- Z ajexp | — Z B;j(Xj — Qij)z (48)
i=1 j=1
a=101,123,32]" (49)
0 3 17 3.5 1.7 8
005 10 17 0.1 8 14
B= 3 35 17 10 17 8 (50)
17 8 0.05 10 0.1 14
1312 1696 5569 124 8283 5886
Q=104 2329 4135 8307 3736 1004 9991 51)
- 2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381

4. Trid Function (TF)

6 6
y=3 =1 XX
i=1 i=2

(52)
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3. Calculate the distance between each weight vector and the ownership vector, take the nearest T weight vectors of each
weight vector, and store theirindex in B. Foreachi = 1,2,... ., N, B(i) = {i1,/2,... .. ir}.

4 Randomly or by other methods to generate initial population: X X2,

5 Foreachi = 1,2,...., N, set FV; = F(x)).

6 Initialize reference point z.

7. while the stop condition is not met

8 fori = 1:N

9 Generate offspring: randomly select two indices k and / from B(i), and use analog binary crossover operator to
generate offspring individuals x: from x* and x/.

10. Adjustment: if necessary (out of bounds, etc.), then adjust xx.
1. Calculate the objective function value F(xx).

12 forj = 1:m

13. if fi(xx) < z;

14. Z = fj(X*)

15. else

16. Z =z

17. end

18. end

19. forj = 1:sum(B(i)

20. if g s | M, 2) <gth(éd | M, 2)

21. X = xx, FV; = F(xx)

22. else

23. X =XV, =F

24, end

25. end

26. Update EP: First delete all target vectors dominated by F(xx) in EP, then add the F(xx) to EP.
27. end % corresponds to the for in Line 8

28. end% corresponds to the while in Line 7

29.END

5. Paviani function (PAF)

10 10\ 022
y = _lIn*(x —2) +1In” (10 — ;)] — (Hx;) (53)

i=1 i=1

6. F16 function

16 16
y= Y aix? +xi+ D> +x+1) (54)
i=1 j=1
T 10 01 00 11 00 00 00 01 T
01 10 00 10 01 00 00 00
00 10 o0 10 11 00 01 00
00 01 00 10 00 10 00 10
row:1=8aj=| o 5 ¢ o 117 00 01 01 00 01 (>3)
00 00 01 01 00 00 00 10
00 00 00 10 00 10 10 00
| 00 00 00 01 01 00 oo 10 |
T 00 00 00 00 10 01 00 01 T
00 00 00 00 01 00 01 00
00 00 00 00 00 10 10 00
00 00 00 00 00 01 01 00
row:9-16)a;=1 o ( § ¢ 00 00 00 00 11 00 (56)
00 00 00 00 00 00 01 00
00 00 00 00 00 00 00 10
| 00 00 00 00 00 00 oo o1 |
7. Sum Squares function (SF)
12/20

y= Z i>|<x,-2 (57)
i=1
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8. SS function

10
y= Zi*xiz
i=1

9. ED function
1012

y=2 2%

i=1 j=1

Appendix E

Table E1. Comparison of EGO and other algorithms.

Function Standard KGO-PS EGO EGO-MO MISK
F1 0S Mean -2 —1.9991 —1.9935 —1.7336
Variance 0 7.0278e-7 1.3984e-4 0.0346
AK 0sS Mean 0.0366 0.1137 0.0563 0.5245
Variance 0.0013 0.0080 0.0017 1.043
ED10 0S Mean 0.00625 1.9840 0.0284 0.1241
Variance 2.0334e-6 1.6460 0.0048 0.0289
ED12 0s Mean 0.0027 1.8240 0.0056 0.0079
Variance 1.0334e-6 0.1678 2.7965e-5 1.7985e-5
SS 0S Mean 0.0012 3.7192 0.0562 0.0246
Variance 2.853e-5 0.7767 0.0365 0.0028
SF12 0s Mean 0.0035 0.3518 0.0145 0.0079
Variance 3.4528e-7 0.0075 0.0092 5.4892e-6
H6 0S Mean —3.3095 —3.0263 —3.2842 —3.3005
Variance 0.0029 0.0185 0.0046 0.0041
TF 0s Mean —49.56 —40.91 —46.9378 —49.9921
Variance 0.1606 14.9129 3.3716 3.6144e-5
PAF 0S Mean —455 —44,0781 —44.549 —45.3212
Variance 0.0407 0.3209 0.2363 0.0194
F16 oS Mean 25.875 36.2879 25.875 25.875
Variance 0 2.2745 0 0
SF20 (SSF) 0S Mean 0.5233 11.9664 0.4063 8.1408
Variance 0.0455 1.2181 0.0105 15.7272

(58)

(60)
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