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ABSTRACT
Exploring traffic flow characteristics and predicting its variation pat-
terns are the basis of Intelligent Transportation Systems. The inter-
mittent characteristics and intense fluctuation on short-term scales
make it a significant challenge on urban roads. A hybrid model,
Genetic Algorithm with Attention-based Long Short-Term Memory
(GA-LSTM), combining with spatial–temporal correlation analysis, is
proposed in this study to predict traffic volumes on urban roads.
The spatial correlation is captured by combining the volume transi-
tion matrix estimated from vehicle trajectories and network weight
matrix quantified from different detectors. The temporal depen-
dency is explored by the attention mechanism, and we introduce
the Genetic Algorithm to optimize it. In the experiment, traffic flow
data collected from License Plate Recognition (LPR), is utilized to val-
idate the effectiveness of model. The comparison is conducted with
several traditional models to show the superiority of the proposed
model with higher accuracy and better stability.
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1. Introduction

Severe traffic problems in urban cities, including traffic congestion, air pollution, and traffic
accident, primarily reduce the living quality of citizens and further influence the attraction
of the cities. Relying on advanced traffic data detection and communication equipment,
deep data mining and analysis technologies, and decision and optimization theory, the
Intelligent Transportation Systems (ITS) has been considered as the key countermeasure
to solve urban traffic problems and relieve traffic pressures. Exploring characteristics in
traffic flow and predicting its variation patterns are the main steps to realize applications
of ITS, such as the Advanced Traffic Management and Control System, Advanced Traveler
Information and Guidance System, etc.
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Currently, a large number ofmethods focusingon short-term traffic flowprediction have
been proposed. In these works, we found that it was a feasible way to improve the predic-
tion accuracy by combining the spatio-temporal correlation of traffic flow in the prediction
models (Zhang et al. 2011; Liu et al. 2016; Ermagun, Chatterjee, and Levinson 2017 and
2018). Furthermore, by extracting the characteristics of traffic flow fromdeep learningmod-
els (Lv et al. 2014; Ma et al. 2015and 2017; Yao et al. 2019; Lin et al. 2019; Zheng et al. 2019),
for example, Recurrent Neural Network (RNN), Convolutional Neural Networks (CNN), Long
Short-Term Memory (LSTM), etc., the prediction performance is improved largely in the
applications for its multi-layer learning mechanism and strong learning ability. Although
abundant researches have been published in recent years, there still exists great challenge
for traffic flow prediction on urban road network shown as follows: (1) large number of
methods have been applied on highway or freeway traffic flow predictions and achieved
good performance. Different from the highway, traffic flow on urban roads is generally
interrupted by the intersectionswith signal control, and it expresses intermittent character-
istics and intense fluctuation on short-term scales. So, it is a challenge to accurately predict
future variation patterns of traffic flow on the urban road network, especially for short-
term prediction. (2) The traffic flow data detected on different points on the road network
expresses temporal and spatial correlation. Adopting this correlation into the prediction
model will be helpful to improve the prediction accuracy. There are two commonly used
methods to represent spatio-temporal correlation, naive andmodest approaches (Ermagun
and Levinson 2019). The former is based on the assumption that traffic flow on a specific
location is highly correlated with the upstream and downstream flow, while the latter con-
structs a mathematical model to quantitatively describe the spatio-temporal correlation of
the traffic flow at different locations on the road network. In general, most of these stud-
ies only consider the positive dependency from the statistical perspective, but overlook the
competitive featureof traffic flows, andalso ignore the influenceof vehicle flow source from
other lanes on the urban road networks. How to integrate the spatial–temporal correla-
tion into predictionmodel and describe the competition (negative correlation), promotion
(positive correlation), and volumes transition relationship among the traffic flow collected
from different detectors is still an urgent issue to be solved. (3) Although a large number
of deep learning methods based on the Long Short-Term Memory (LSTM) model achieved
excellent prediction performance for traffic flow, due to the input variable constructed by
historical traffic flow data is the long time series, the prediction errors will be accumu-
lated (Cho et al. 2014) and prediction performance will be eventually affected. Meanwhile,
all historical data in the model training process is assigned the same weight in the tradi-
tional LSTM model, ignoring the unique importance of previous traffic states at each time
step.

Focusing on the challenges introduced above, a GA-LSTM model is proposed to fin-
ish short-term traffic flow prediction on urban road network considering spatio-temporal
correlation based on the volume transition matrix and network weight matrix with
tendency eliminating strategy. The main contributions and works of this study can be
summarized as:

(1) The data source used in the prediction of this study was collected from the License
Plate Recognition (LPR) devices, which were equipped at intersections on the urban road
network. Through data preprocessing, we extract the traffic volume of all vehicles in each
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lane. Based on the traffic flow data collected at the intersections, we can extract the
temporal and spatial correlation of traffic flow data for different road sections.

(2) In the temporal correlation, the attention mechanism is utilized to represent impor-
tant relevance on time dimension from historical samples. In the spatial correlation, a
hybrid weight matrix, which combines volume transition matrix estimated from vehicle
trajectories and network weight matrix quantified from different detectors, is constructed
to represent the competition (negative correlation) and promotion (positive correlation)
among the traffic flow at different locations.

(3) The GA-LSTM model is proposed to improve prediction accuracy in the urban road
network. The attention mechanism is applied to reduce the impact of cumulative errors
caused by long time series in input variables and highlight the impact of historical data at
different time steps on future traffic volume. Accordingly, the Genetic Algorithm (GA) with
the competitive randomsearch strategy is applied tooptimize the attentionweight in order
to capture the temporal evolution of short-term traffic flow on the urban road network.

(4) The proposed method is validated using the traffic flow on urban intersections col-
lected by the LPR devices in Changsha city, China. Compared with widely used prediction
models, the results of experiment show the superiority of the proposed model with higher
accuracy and better stability.

The remainderof this paper is organizedas follows.We summarize the related researches
on traffic flow prediction in Section 2. Section 3 presents the details of the spatio-temporal
correlation and the GA-LSTM model. The data source applied in this study is described
in Section 4. In Section 5, we analyze the experiment result of the proposed model and
compare the performance with other traditional models. Finally, Section 6 presents the
conclusions of this study and future works.

2. Related work

To achieve more efficient and reliable short-term prediction performance, numerous stud-
ies have been conducted to build better short-term traffic forecasting models in recent
years (Vlahogianni, Karlaftis, and Golias 2014). Generally, existing approaches can be
divided into two categories: parametric approaches and nonparametric approaches.

(1) Parametric approaches. Parametric approaches refer to those models based on a
mathematical method, whose structure is predetermined by certain theoretical assump-
tions, and the parameters are computed by the empirical data (Tang et al. 2019a). The para-
metric methods can be viewed as capture the temporal trend of the traffic flow from the
classical statistical perspective. Because of its stable performance and reasonable explana-
tory advantages, the statistical model has been extensively used in the field of time series
prediction.Among theparametric approaches, theAutoregressive IntegratedMovingAver-
age model (ARIMA) family-related models are one of the most widely used methods in
short-term traffic flow prediction. It was originally applied to forecast traffic flow on the
freeway in the 1970s (Prigogine and Herman 1971). From then on, in order to improve
the prediction accuracy of the naive model, a large number of variants ARIMA model have
been proposed, such as seasonal ARIMA (Williams and Hoel 2003), subset ARIMA (Lee and
Fambro 1999), Kohonen-ARIMA (Van Der Voort, Dougherty, and Watson 1996), and spa-
tial–temporal ARIMA (Min et al. 2009). Furthermore, there are also some other statistical
models used in traffic flow prediction. Zou et al. (2015) construct a hybrid predictionmodel
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combining space time (ST), vector autoregression (VAR), and ARIMA for speed forecasting
on freeway. Zhang, Haghani, and Zeng (2014) presented two component GARCHmodels to
model trend and seasonal components through a decomposition process to predict travel
time. The experimental results showed that this model performs well in capturing uncer-
tainties related to travel time prediction. However, due to their relatively simple structure
and theoretical assumptions, thesemodels cannot accurately explore the intense variation
of traffic flow, especially in a complex non-linear system, and always suffer from the curse
of dimensionality (Oswald, Scherer, and Smith 2000).

(2) Nonparametric approaches. To overcome the limitation of traditional statisticalmod-
els, scholars turn their attentions to the field of nonparametric models constructed based
onmachine learning structure, such as support vector machine (SVM) (Wang and Shi 2013;
Feng et al. 2018; Tang et al. 2019b), least squares support vector machine (LS-SVM) (Zhang
and Liu 2009), artificial neural networks (ANN) (Vlahogianni, Karlaftis, andGolias 2005; Chan
et al. 2011;Huanget al. 2014; Tanget al. 2017; Li et al. 2019b), etc.Due to strong learningper-
formance, flexible structure, and powerful generalization ability, machine learning models
have been considered as one of themost popularmethods in short-term traffic flowpredic-
tion. Currently, deep learningbased-models havebeenapplied in the short-term traffic flow
prediction and achieved better prediction performance compared to traditional models
(Cui et al. 2019; Dai et al. 2019; Deng, Jia, and Chen 2019; Zhao et al. 2019). The application
of deep learning models in the field of traffic flow prediction mainly focuses on CNN and
RNN structures. CNN-basedmethods have powerful spatial featuresmodeling ability, while
RNN-based methods are excellent at capturing time-varying characteristics. When faced
with some issues that require accurate predictions for a single point, for instance, missing
value imputation (Tang et al. 2015), self-adaptive intersection control (Hui et al. 2008), etc.,
the many-to-one network has its unique advantages. Through modeling spatial correla-
tion, it can better reflect the actual impact of surrounding traffic flows such as downstream
and upstream to the researching object. Due to remarkable performance to solve gradient
explosion issues and strong memory ability for the input sequences, LSTM and other vari-
ants of RNN are regarded as one of the state-of-art methods to deal with the prediction in
time series data. But in the face of long input sequences, the prediction error of the LSTM
will be accumulated. Inspired by the human recognition mechanisms, many researchers
have employed attention mechanism into the field of machine translation and natural lan-
guage processing (NLP). Qin et al. (2017) introduced the attention layers into the time series
prediction model based on RNN and obtained better prediction results. The attention lay-
ers can help themodel to enhance the input features, so that strengthen the ability of long
sequencesmodeling. In general, machine learning or deep learning-basedmodels can pro-
duce higher accuracy and better stability in short-term traffic flow prediction for its strong
learning ability and flexible structure with no or little prior assumptions.

(3) Combining spatial–temporal correlation to enhance prediction performance. The
states of traffic flow in the future time periods can be estimated from the distribution of his-
torical data. Hence, the temporal correlations of traffic flow are frequently considered as an
essential factor or component integrated into thepredictionmodel. In the temporal correla-
tion analysis, the number of data samples used in historical data in the prediction is a critical
issue that needs to be solved.Ma et al. (2015) proposed an LSTMbasedmodel to determine
theoptimal time lags automatically. Dai et al. (2017) introduced aDeepTrendmethodology,
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combining an extraction layer and a prediction layer based on LSTM, to capture the time-
varying relationship in traffic flow. In addition to the temporal correlation, in actual, vehicles
in the road networkwill pass across several neighboring intersections sequentially. It is also
demonstrated in many studies that combing traffic flow data collected from multiple sen-
sors with high spatial correlation could achieve better prediction accuracy (Van Lint 2008;
Huang et al. 2014; Tan et al. 2016). Van Lint (2008) highlighted that downstream informa-
tion is an essential part of travel time forecasting in congested situations. However, these
approaches focus on the micro relationship in several adjacent segments while overlook-
ing the spatial dependency from the surrounding detectors at the network level. To answer
this question, scholars proposed two criteria: correlation-coefficient assessment and dis-
tance adjustment. In the former, we can select detectors with high coefficient as an input
in the forecasting models, while the latter criterion is consistent with Tobler’s ‘first law of
geography’ (Miller 2004). To detect spatially correlated links at the network-level, Cheng
et al. (2014) employed the dynamic spatial weight matrix into the traffic flow prediction
model. Furthermore, Ermagun and Levinson (2019) divided the spatial correlation analysis
studies into naive approaches andmodest approaches. The naive approaches assume that
the traffic condition on the target road segment is highly associated with the upstream.
In the modest method, researchers are enthusiastic about considering the information of
neighboring detectors to promote the prediction accuracy.

In this paper, we utilize the GA-LSTM model for short-term traffic flow prediction on
urban roads. In the proposed prediction framework, attention mechanism is adopted
to construct weights for historical data to achieve importance-based sampling, and the
Genetic Algorithm is applied to optimize the attention weights in the LSTM. Based on the
LPR data, the hybrid weight matrix, combining the volume transition matrix and network
weight matrix, is constructed to represents the spatio-temporal correlation of the traffic
flowat intersections. The volume transitionmatrix reflects themicro relationshipbyextract-
ing the driving trajectory of the vehicle, while the network weight matrix captures the
macro correlation from a statistical perspective. To verify the performance of this model,
experiments are conducted on a local road network from Changsha city. The prediction
results comparedwith several widely usedmodels demonstrate the validity and stability of
the proposed model.

3. Methodology

3.1. Framework of predictionmodel

This study aims to capture the spatio-temporal correlation in traffic flow data on the urban
roadnetwork and combine it into thepredictionmodel to improvepredictionperformance.
The framework of the model mainly includes the following four parts. Firstly, a data fusion
process is proposed to explore the spatial relationship between traffic flow collected at dif-
ferentdetectors by integrating the volume transitionmatrix and thenetworkweightmatrix.
Then, the attention-based LSTM model is designed by adopting the detectors expressing
the highest spatial correlation with the target one to predict future traffic states. Further-
more, the attention mechanism is applied to distinguish the unique importance of each
previous time step. Finally, we employ the Genetic Algorithm to optimize the attention
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Figure 1. The framework of the proposed model.

weights. The framework of the prediction model is shown in Figure 1. All the detailed
descriptions will be introduced in the following subsections.

3.2. Spatial correlationmining

To mine the spatial correlation from the road network effectively, in this subsection, we
utilize the network weight matrix (Ermagun and Levinson 2019) to explore the statistical
correlation from the macro scale and propose the volume transition matrix to extract the
relationship with upstream and downstream intersections from the micro scale.

3.2.1. Network weightmatrix
Traffic flow observed from the road network expresses both temporal and spatial correla-
tion. The temporal correlation extracted from the historical dataset typically outweighs the
spatial correlation as it is more intense than the spatial dependency (Ermagun, Chatterjee,
and Levinson 2017). Hence, to explore spatial correlation in-depth, it is necessary to remove
the impact of the temporal trend in traffic flow data.

3.2.1.1. Time seriesdetrending. Generally, there exist two types of temporal correlations:
(1) thedistributionof traffic volumes at the same timeperiodsondifferent days express sim-
ilar patterns. (2) the trendof traffic flowduring aday often changes in anM-shape, including
morning and evening peak hours. A detrending method is employed to eliminate these
two types of temporal correlations based on average and autoregressive moving average
(ARMA) model. Let ys,d denotes the sth detector in the road network on the dth day:

ys,d = [y1s,d , y
2
s,d , . . . , y

M
s,d] (1)

where M denotes the total amount of time interval in a day. For example, if the time scale
is set to 5 min, then there will be 288 periods in a day, that is,M = 288.
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Then, for the first type of temporal trend, named simple average, can be calculated
as:

μk
s =

1
N

N∑
i=1

yks,i (2)

whereμk
s denotes the average traffic volume in the kth time interval of the sth detector, and

N represents the total number of days. After observing the simple average trend, the first
type of residual for traffic flow can be obtained by removing the above tendency from the
original time series as:

Rks,d = yks,d − uks (3)

The simple average trend can be seen as the macro temporal tendency. Next, we further
apply the ARMA with an appropriate order to mitigate the micro tendency of time-of-day.

rks,d =
p∑

i=0
βk−iRk−is,d +

q∑
j=0

αk−jεk−j (4)

For the p in the Eq. (4), the larger the values indicates the higher dependency on historical
data exists, while for the q, the higher value means there is a strong interference term. In
this way, we can obtain the fitting result of r, and regard the fitting error between the true
values and the fitting results as the final series r̃.

r̃ks,d = Rks,d − rks,d (5)

Following the aforementioned steps to remove the temporal dependency, we can effec-
tively capture the hidden spatial correlation between traffic flows on the road network.

3.2.1.2. Statistical correlation. After the detrending method, we employ the network
weight matrix to describe the spatial correlation between traffic flow data collected from
different detectors in the road network, which can represent both positive and negative
correlations between traffic flow data (Ermagun and Levinson 2019). To approximately
determine the relationship between different detectors, the Spearman rank correlation
coefficient (Ziegel 2001) is utilized in this study as follows:

NWM(s1, s2) =
∑T

t=1(r̃ts1 −
−
r s1)(r̃

t
s2 −

−
r s2)√∑T

t=1 (r̃ts1 −
−
r s1)

2
(r̃ts2 −

−
r s2)

2
(6)

where r̄s1 and r̄s2 are the means of rank of the residual series in the detector s1 and s2. The
values of Spearman rank correlation coefficient are ranged between – 1 and 1, where the
larger the absolute value is, the stronger relationship exists between the two detectors.
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After implementing the above calculation steps, we can obtain the network weight
matrix: NWM. In the network weight matrix, the closer the value of the element is to −1,
the stronger the negative correlation exists; otherwise, the traffic flow data exhibit a signif-
icant positive correlation. Generally, the negative spatial correlations between traffic flows
are often overlooked in previous studies (Cheng et al. 2011; Li et al. 2019a). However, in
the actual urban road network, different from highway networks, there are several routes
or links between origins and destination, which means these links exhibit a competition
with each other. For example, when an intersection is congested, the driver can change
to travel on another road to keep away the congestion, and this will cause the decrease
of volumes in this intersection and the increase of vehicles for the alternative intersec-
tions. Considering the negative correlation or competitive relation of traffic flowat different
detectors, we can better extract the spatial distribution of traffic flow in the urban road
network.

3.2.2. Volume transitionmatrix
Besides the statistical relationship, the traffic volumeof a specific detector is alsoprofoundly
affected by the adjacent ones. Although the aforementioned network weight matrix can
estimate the spatial correlation between detectors from macro perspective by calculating
the statistical correlation among traffic flow data, we need further consider the trajecto-
ries of the individual vehicle from the micro perspective, so as to understand the volume
transition among different intersections and the vehicle source of the specific intersection.
According to the vehicle records collected from LPR devices, the volume transition matrix
is proposed to estimate the spatial correlation by continuously storing the upstream to the
downstream intersections that vehicles passing through. Then these trajectories are used
to reflect the traffic volume transition relationships among different intersections. Figure 2
shows a clear process to extract vehicle trajectories among different intersections. Further-
more, we also prove the definition and calculation process of the volume transition matrix
as follows.

Figure 2. Vehicle trajectory extraction process.
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Definition 1: The trajectory of vehicle m, denoted as Lm, represents the records of n
intersections that the vehiclem continuously passes through.

{
Lm = {lm1 , lm2 , . . . , lmi , . . . , lmn }
Tmi+1 − Tmi < tε , i = 1, 2, . . . , n− 1

(7)

where lmi represents the ith intersection for the mth vehicle passing through, Tmi denotes
the time of themth vehicle passing the ith intersection, and tε represents the time threshold
which is set to be 10 min in this study.

Definition 2: Volume transition matrix (VTM) is denoted as VTM ∈ RN×N, where N denotes
the total intersection entrances considered in the studied area. The volume transition
matrix is defined below.

It is worth noting that, the proposed VTM only represents the outgoing traffic of each
detector. However, for the most urban road segments, there exist both inbound and out-
bound traffic volumes. For the target road segment, traffic flow moves from upstream to
downstream. Hence, we utilize the sum of the inbound and outbound volumes as the
total transition volumes. According to the VTM, VTM(i, j) denotes traffic volumes transit from
detector i todetector j, while VTM(j, i)denotes traffic volumesmove fromdetector j todetec-
tor i. Hence, the final volume transition matrix can be defined by combining the VTM with
its transpose matrix VT

TM.

VTM = VTM + VT
TM (8)

3.2.3. Matrix fusion process
The aim of the spatial correlation mining is to extract k adjacent detectors with the highest
effect on the target one. In order to combine the influence of the network weight matrix
and volume transitionmatrix, we propose a similarity calculation process to fuse the above
two matrixes.

In the VTM, each element represents the amount of volumes. Hence, we utilize the
min–max normalization method to eliminate the dimension as follows:

VTM(i, :) = VTM(i, :)− VTMmin(i, :)
VTMmax(i, :)− VTMmin(i, :)

(9)

whereVTMmax(i, :) andVTMmin(i, :) represent themaximumandminimumtransition volumes
of detector i.

After the normalization process, each element in the volume transition matrix is trans-
ferred into the range of [0, 1]. However, elements in the network weight matrix are limited
in [−1, 1]. Hence, we should take reasonable transforming process, rather than utilizing
the two matrixes directly. For the network weight matrix, the absolute value reflects the
strength of the correlation. In detail, the closer the element tends−1, the stronger the neg-
ative correlation of the traffic flow at two positions; in contrast, if the element is close to
1, there exists a strong positive correlation. However, for the volume transition matrix, the
higher the value of the element is, the stronger the correlation becomes. In order to identify
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severalmost detectorswith high spatial correlation to the target one, the distance between
target detector i and adjacent detector j can be calculated as:

Distance(i, j) =
√[

1− VTM(i, j)]2+[
1− ||NWM(i, j)||]2 (10)

3.3. Genetic Algorithmwith A-LSTM

3.3.1. Attention based LSTM
In this study, we proposed a prediction framework of attention-based stacked LSTM and
Gate Recurrent Unit (GRU) for traffic volume prediction on the urban road. As LSTM can
solve the issue of gradient explosion and vanish in traditional RNN effectively, it demon-
strates excellent performance in long-term dependency. In this part, we first introduce the
network structure of the LSTM and GRU. LSTM consists of three gates and two cells: input
gate, forget gate, output gate, hidden cell, memory cell (Olah 2015). This structure allows
LSTM to selectively keep states, forget previous states, and transfer the current informa-
tion to the next unit. Traffic states in different previous time steps have different significant
effects on predicted results of traffic flow. To address this issue, we utilize the attention
mechanism with the stacked LSTM and GRU to enhance the key information in the input
sequence to better extract internal features through an importance-based sample pro-
cess, which means assigning different weights to input variables at different time step for
multivariate time series prediction.

The aim of the traffic flow prediction in this study is to use the given historical series
[xit−n+1, x

i
t−n+2, . . . , x

i
t]
T at the ith location and its correlated flows to forecast the future traf-

fic volume xit+1, where n represents the number of the time step of the input sequence. And
we define [x1t , x

2
t , . . . , x

k
t ] as the traffic flows collected from k detectors that show high cor-

relation with the ith detector at the tth time interval. Then, the calculation procedure of the
A-LSTM is shown as follows.

Firstly, we extract the k detectors expressing the strongest influence on the target detec-
tor to construct the input data. Then, the attention weights of the input sequence are
denoted as:

Xit =

⎡
⎢⎢⎢⎢⎢⎢⎣

x1t−n+1 . . . xkt−n+1 xit−n+1
x1t−n+2 . . . xkt−n+2 xit−n+2

...
...

...
...

x1t . . . xkt xit

⎤
⎥⎥⎥⎥⎥⎥⎦

(11)

W = (w1,w2, . . . ,wn) (12)

Additionally, to ensure that the sum of all weights is 1, this model utilizes a Softmax clas-
sifier shown in Eq. (13). Meanwhile, this mechanism also ensures all the attention weights
to be non-negative.

w̃j = exp(wj)∑n
i=1 exp(wi)

(13)
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According to the attentionweights vector, we can assign eachweight to the corresponding
time step as follows:

X̃ it(j, :) = w̃j · Xit(j, :) (14)

Hence, the pattern for significant features can be strengthened during the temporal rela-
tionship mining process. The critical features in the input sequences can be enhanced,
which canpromote the learning capability ofmodel for long sequences. After that,we enter
the enhanced input sequence into the LSTM model. The predicted traffic volumes can be
iteratively calculated as follows:

It = σ(WixX̃
i
t +WihHt−1 +WicCt−1 + bi (15)

Ft = σ(WfxX̃
i
t +WfhHt−1 +WfcCt−1 + bf (16)

Ct = It � Ct−1 + It � φ(WcxX̃
i
t +WchHt−1 + bc) (17)

Ot = σ(WoxX̃
i
t +WohHt−1 +WocCt−1 + bo) (18)

Ht = Ot � φ(Ct) (19)

where It , Ft , Ot denotes the input gate, forget gate, and output gate respectively, and Ct ,
Ht denotes the memory cells and hidden states respectively. TheW represents the weight
matrixes and b denotes the bias.� represents the Hadamard product. σ(·) and φ(·) are the
activation functions which can be calculated as follows:

σ(x) = 1
1+ exp(−x) (20)

φ(x) = exp(x)− exp(−x)
exp(x)+ exp(−x) (21)

The structure of GRU is similar to LSTM. Differently, GRU combines the input gate It and
the forget gate Ft into a single gate module, named update gate Zt . Besides, it also merges
the cell state Ct and hidden states Ht and create the reset gate Rt . As a result, it is simpler
than standard LSTMmodels, and becomesmore popular due to simplifying the calculation
process. Supposed the input vector of GRU as mt , the calculation process of GRU can be
describe as follows:

Rt = σ(Wrmmt +WrhHt−1 + br) (22)

Zt = σ(Wzmmt +WzhHt−1 + bz) (23)

H̃t = tan h(Whmmt + (Rt � Ht−1)Whh + bh) (24)

Ht = Zt � Ht−1 + (1− Zt)H̃t (25)

yt = WyoHt + by (26)

whereWrm,Wzm,Whm,Wzh andWhh are the weight matrixes; br , bh and bz are the bias. As
σ(·) is defined in Eq. (21), it will transfer all the input values into the rangeof [0, 1]. Therefore,
all the elements in the reset gate Rt and update gate Zt are limited into the range of [0, 1] to
control the information, which is of vital importance to capture the dependencies in long
input series. Figure 3provides a clear descriptionof thepredictionprocessbasedonA-LSTM
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Figure 3. Prediction framework of A-LSTMmodel.

Figure 4. The training procedure of the A-LSTMmodel.

including input variables, main structure and output variables. Andwe utilize the computa-
tional graph of the A-LSTM to reflect its training procedure, which is illustrated in Figure 4.
Based on this figure and the calculation process described above, the A-LSTM model can
utilize the input previous traffic flow data to forecast future traffic states. The predicted val-
ues are compared with the ground truth to generate the training loss, which is utilized to
optimize the model parameters and bias through the gradient descent method.



TRANSPORTMETRICA A: TRANSPORT SCIENCE 1229

3.3.2. Genetic Algorithm optimization
In theoriginal LSTMandGRU, all parameters, including the attentionweights, are optimized
bygradientdescent approach.However, itmayeasily lead to anoptimal local solutionwhen
using gradient descent for optimization. In this part, we utilize a Genetic Algorithm com-
bined with the A-LSTM (GA-LSTM) to search the optimal global solution (Li et al. 2019c).
Specifically,weutilize theGeneticAlgorithm tooptimize the two-layer deep learningmodel
stacked by LSTM and GRU, and propose an improved encoding strategy to allow the val-
ues of attention weights both positive and negative in order to reflect the inhibition and
promotion relationship of traffic flows at previous time steps.

GeneticAlgorithm is a computationalmodel that simulates thenatural evolution and the
evolutionary process of genetics. In general, it searches the optimal global solution through
selection, crossing-over, mutation, and reorganization (Davis, 1991). In this study, the opti-
mal target is to minimize the error of the prediction model, so we utilize the Root Mean
Squared Error (RMSE) as the evaluation function shown in Eq. (27). To improve the efficiency
and ensure the converge rapidly, we first divide the population into S subsets and then turn
into the Genetic Algorithm process to finish optimization. The brief training framework of
the GA-LSTM is illustrated in Figure 5 and the detail introduction of is shown in Figure 6.

(1) Encoding strategy. For each attention weight, we extend the binary encoding strat-
egy. In detail, we randomly assign each attention weight ranged into [−1, 1] and encode
them into a 7-bit binary string. In each binary string, the first bit represents the sign, where
0 and 1 represent the negative and positive sign, respectively, and the others S denote the
weight value. This improved strategy can not only effectively reflect the time evolution of
traffic flow, but also facilitate the subsequent optimization process. In the competitive ran-
dom search process, we utilize the proposed encoding strategy to initialize the population
and divide the population into S subsets.

(2) Selection. For all individuals in each subset, we decode the binary string first and
utilize the LSTM with the corresponding attention weight to obtain the prediction perfor-
mance as the fitness score. After that, select the individualwith thebest fitness score among
each subset, named champion individual, into the newly generated population for further
iteratively operation. It should be noted that the size of the initial new population is equal
to the total number of subsets S.

(3) Crossover. After the selection step, a crossover operation is utilized to generate new
individuals. In this step, we randomly select two champion individuals for pairing and then
take the binary-valued crossover operation to generate new individuals until the size of the
newly generated population is equal to the original population.

Figure 5. The detail introduction of the optimization process for GA-LSTM.
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Figure 6. The detail introduction of the optimization process for GA-LSTM.

(4)Mutation. The role of themutation operation is tomake the Genetic Algorithm have
local randomsearchability andmaintainpopulationdiversity. This process randomly selects
several indexes in the binary string and reverses to the opposite values. For instance, if the
selected binary value is equal to 0, then it will be inversed to 1.

By dividing the population into several subsets, there appears a higher random proba-
bility to maintain the unique feature of child individuals. It firstly selects the best individual
in each subset according to the prediction performance and then utilizes all the best indi-
viduals to generate the next-generation population. Compared with the naive Genetic
Algorithm, this proposed method can help to avoid an early convergence and search for
the global optimum effectively. Moreover, the proposed encoding strategy can make the
attention weights negative, which can promote the ability to capture the inhibition cor-
relation in traffic flow. In this way, attention weights can fully reflect the characteristics
of dynamic evolution in traffic flow and effectively achieve the enhancement of extracted
features. Table 1.

4. Data description

Traffic flow in the urban road network often exhibits intermittent flow characteristics due to
the signal control at intersections. The License plate recognition (LPR) devices are located
at intersections to identify the vehicle license and record its time passing the intersection
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Table 1. Pseudo-code for calculation process of VTM.

Algorithm: The calculation process of VTM

1 Input: Observations of trajectory set L = {L1, L2, . . . , Lm}
2 Output: The volume transition matrix VTM ∈ RN×N
3 Process:
4 for all vehicles i(1 ≤ i ≤ m) do
5 Extract the start point li1 and end point l

i
n

6 for the passing-by collection location j(1 ≤ j ≤ n− 1) do
7 for the passing-by collection location k(2 ≤ k ≤ n) do
8 VTM(lij , l

i
k)← VTM(lij , l

i
k)+ 1

9 end for
10 end for
11 end for

Figure 7. An overview of the study area and the coverage of LPR devices. (a) locations of LPR devices,
(b) traffic volume detection on lanes.

through fixed cameras (Zhang et al., 2014). The traffic flow data used in this study were col-
lected on the urban intersections in Changsha city, China. There are about 600 intersections
equipped with LPR devices, and the density of intersections in the center of the city is rel-
atively high. In this study, we select a local road network with 19 intersections from a local
network in the urban town, shown in Figure 7. Aswe can see, the selected area has a regular
road network and high LPR coverage, and it is used tomodel and test the proposed predic-
tion model. The data collecting duration starts from Jul. 1–31, 2019. The historical dataset
consists of 19,441,883 records.

Generally, each LPR record involves the following information used in this study: vehi-
cle ID, intersection ID, record time, direction number, and lane number, shown in Table 2.
It should be noted that the vehicle IDs are transformed into unique numbers considering
privacy protection. The direction number indicates the direction of a vehicle run through
the intersection, and the ‘1′′ represents the east, ‘2′′ represents the west, ‘3′′ represents the
south, and ‘4′′ represents the north. The lane number indicates the number of lanes from
outside to inside in different directions.

In this study, traffic volume is collected by accumulating the number of vehicles pass-
ing the intersection recorded from the LPR devices. As the lane-level traffic volume data
collected from LPR, we can accumulate the volume at different temporal scales and spa-
tial levels. Figure 8 shows the traffic volume collected at lane level, entrance (direction)
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Table 2. Row data sample of LPR records.

Vehicle ID Intersection ID
Record
Time

Direction
Number

Lane
Number

XAL89Y0ARP 821251000050 2019/7/1 0:08:08 1 2
XNEP120PEQ 690051223050 2019/7/3 0:02:02 2 1
XAE53G2FSV 822291000050 2019/7/5 0:07:33 3 2
XA2KK18ASD 820721445000 2019/7/7 0:01:59 4 3
XDW0825VXZ 820371367000 2019/7/9 7:03:52 4 1
XAR0932AGH 690021210000 2019/7/10 0:35:10 3 5

Figure 8. Traffic volumes collected in 5min during one day at four levels. (a) Lane level, (b) Entrance
level, (c) Intersection level, (d) Area level.

level, intersection level, and total area level at 5min time scale. From the observation of
Figure 8, the traffic volume at the micro-level, including lane and entrance level, expresses
sharp fluctuations and variation. This phenomenon is mainly caused by signal control at
the intersection, which will interrupt the traffic flow. For the intersection and area level, we
can observe that the traffic flow presents an apparent M-shape tendency, and it becomes
more stable and smoother. From the perspective of the traveler, they may pay more atten-
tion to the traffic states in their driving direction rather than the vehicle volume at each
lane. Besides, for the intersection and area level, although the traffic volume collected at
these two levels can provide the administration with information between road capacity
and traffic demand to improvemanagement, it is still difficult to obtain practical assistance
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in the applications, especially in traffic guidance or intersection signal control. Hence, in
this study, we only consider using the traffic volumes collected at the entrance level for
prediction. Finally, a total of 64 entrances shown in the selected area are used to estimate
spatial–temporal correlation and construct prediction model.

5. Experiment

5.1. Performance evaluation indicator

To test the performance of the proposedGA-LSTM framework for entrance-level traffic flow
prediction, we select three entrances (red points shown in Figure 7) from the studied area
as cases. In order to verify the prediction accuracy and stability of the proposedmodel, the
LPR records of the first 25 days are employed to create the trainingdataset andoptimize the
hyperparameters through the cross-over validation process. And we testify the prediction
capabilities using the data set collected in the last six days.

To evaluate the prediction effectiveness of the proposedmodel, two performancemea-
sures, Root Mean Squared Error (RMSE) and mean absolute error (MAE), are introduced in
this study, shown as follows:

RMSE =
√√√√1

λ

λ∑
i=1

(ŷi − yi)
2 (27)

MAE = 1
λ

λ∑
i=1
|ŷi − yi| (28)

where the ŷi denotes the predicted values, while the yi represents the ground truth. λ

denotes the number of the observations.

5.2. Parameters optimization

(1) Parameters optimization in LSTM-GRU

In LSTM and GRU, the prediction performance is sensitive to the number of batch size B,
epoch E, and hidden units U in each layer. These parameters not only affect the predic-
tion accuracy but also have a significant influence on the runtime. For instance, with the
increment of the epoch, it tends to cause the model to fall into overfitting and waste com-
putation power. At the same time, too few epochs will result in poor prediction results.
To approximate the best performance of this model, a grid search strategy is utilized
over the aforementioned parameters. We carefully tune the number of the batch size
B ∈ {32, 64, 128, 256}, epoch, and the hidden units of each layerU ∈ {64, 128, 256, 512}. For
the entrance level, the time step is set to 20. To evaluate the effect of each value, we choose
RMSE in Eq. (27) as the evaluation metric. After implementing the grid E ∈ {25, 50, 75, 100}
search process, the optimal parameters are shown in Table 3.

(2) Parameters optimization in Genetic Algorithm

Meanwhile, in the Genetic Algorithm, the size of the attentionweight population P, the size
of the selected subset population C, and the number of the epochs also influence on the
convergence and efficiency of the optimization process. In order to balance the efficiency
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Table 3. Parameter optimization results.

Entrance
Epoch

numbers
Neurons
numbers Batch size

A 50 256 128
B 75 256 64
C 50 64 64

and accuracy in the prediction, we set the population size P = 64, subset population size
C = 8, and the cycles T = 30. Besides, the encoding length is assigned to 7, so the first bit
is used to determine the sign and the left 6 bits represented the weight values.

5.3. Prediction performance comparison

The proposed GA-LSTM model is implemented based on the open-source framework
MXnet (Chen et al. 2015), using Python 3.7.1. Adam optimizer (Kingma and Ba 2014)
with learning rate 0.001 is adopted as the optimization method. In addition, all of these
experiments are conducted on a workstation with 32 GB, an Intel Core (TM) i9-9900 K
CPU @3.6 GHz, and a 2080Ti GPU. In order to validate the performance of the proposed
spatiotemporal GA-LSTM model, several candidates, including statistic methods, machine
learningmethods, and deep learningmethods are employed as baselines. A brief introduc-
tion of these methods is described as follows:

(1) ARIMA. ARIMA is the most widely used statistical model in traffic flow prediction.
The maximum likelihood estimation estimates the parameters of the ARIMA model based
on the Akaike Information Criterion (AIC). Specifically, the parameters in ARIMA are set as:
p = 5, d = 0, q = 1.

(2) BPNN. Back-Propagation Neural Network is one of the most commonly used artifi-
cial neural network. Generally, it contains three patterned layers: input layer, hidden layer,
and output layer. In this study, we construct a two-hidden-layers neural network with 100
neurons in each layer.

(3) LSTM. LSTM is a common deep learning approach applied in the prediction and its
structure is introduced in the above description. We use the same parameters as GA-LSTM.

(4) CNN. Convolutional neural networks (CNN) are also a widely used deep learning
method in traffic flow prediction. The structure of the CNN used in this study is as followed:
3× 3 convolutionwith pad 1, 2× 2max poolingwith stride 2, 3× 3 convolution layer with
pad 1, 2× 2max pooling with stride 2, fully-connected layer with unit 256, fully-connected
layer with unit 128, flatten layer, fully-connected layer with unit 64.

(5) A-LSTM (Attention-LSTM). Combine the attention mechanism with LSTM. In the
training process, gradient descent approach is utilized to optimize the weights of the
attention layer.

(6) ST-LSTM (Spatio-temporal-LSTM). Combine the aforementioned spatio-temporal
correlation into the LSTM. The time threshold tε in volume transitionmatrix is set to 10min,
and the number of the correlated entrance, k, is set to 10.

(7) STA-LSTM. Combine the attention mechanism into ST-LSTM, similarly, the gradient
descent method is applied to optimize the attention weights.

(8) GA-LSTM. The prediction model proposed in this study, Genetic Algorithm is
applied to optimize the attentionweights, and the spatial–temporal correlation combining
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Table 4. Prediction performances of different models for the intersection entrance A.

Time Step

1 4 7 10

Model RMSE MAE RMSE MAE RMSE MAE RMSE MAE

ARIMA 24.48 15.52 35.05 20.63 42.58 24.73 48.30 29.12
BPNN 24.85 15.40 38.86 20.17 41.33 22.86 41.99 24.41
CNN 28.36 15.93 34.22 19.15 39.93 22.70 40.97 24.30
LSTM 25.50 15.85 35.72 19.91 43.12 24.55 48.05 31.65
A-LSTM 25.21 16.57 36.20 19.59 43.80 24.68 49.35 29.52
ST-LSTM 22.62 14.51 32.22 19.45 37.31 21.41 41.00 26.26
STA-LSTM 23.78 14.36 33.01 19.57 37.24 21.73 41.38 25.81
GA-LSTM 21.82 13.58 31.53 18.00 35.51 20.60 38.39 23.20

Table 5. Prediction performances of different models for the intersection entrance B.

Time Step

1 4 7 10

Model RMSE MAE RMSE MAE RMSE MAE RMSE MAE

ARIMA 17.10 12.56 20.73 15.50 23.54 17.64 26.15 19.85
BPNN 16.64 11.83 18.62 13.82 20.02 14.78 21.67 16.32
CNN 16.51 11.59 19.17 13.60 20.11 13.58 21.18 14.91
LSTM 17.78 14.04 19.38 15.02 21.51 16.93 24.27 18.70
A-LSTM 18.00 14.18 19.14 14.02 21.64 16.53 25.18 18.95
ST-LSTM 16.06 11.66 17.84 13.20 18.88 14.21 21.17 15.65
STA-LSTM 16.93 12.69 18.79 13.41 21.23 15.40 24.38 19.08
GA-LSTM 15.40 11.35 16.47 12.15 17.54 13.09 19.19 14.58

Table 6. Prediction performances of different models for the intersection entrance C.

Time Step

1 4 7 10

Model RMSE MAE RMSE MAE RMSE MAE RMSE MAE

ARIMA 8.70 6.38 10.47 7.69 12.86 9.41 15.34 11.17
BPNN 8.29 6.10 9.23 6.84 10.91 8.19 12.31 9.35
CNN 8.26 6.01 9.31 6.86 12.48 7.48 12.11 8.40
LSTM 8.63 6.36 9.90 7.33 11.85 9.48 13.69 10.64
A-LSTM 8.89 6.63 10.41 7.94 12.54 9.67 14.67 11.19
ST-LSTM 8.19 6.23 8.72 6.36 10.03 7.30 11.82 8.99
STA-LSTM 8.12 6.16 8.91 6.44 10.74 8.22 12.59 9.04
GA-LSTM 7.84 5.79 8.58 6.34 9.67 7.25 10.84 8.24

network weight matrix and volume transition matrix is integrated into the LSTM
model.

To make a fair comparison, all the LSTM-based models use the same hyperparameters
and trained by MXnet in Python. Meanwhile, all the models shown in the comparison use
the same training set in the parameters optimization and the same test dataset in the
prediction performance validation. Tables 4–6 show the prediction performances of eight
models with different prediction time steps for three selected intersection entrances. The
model with the best prediction performancemarked in bold. Figure 9 further expresses the
distribution of partial actual volumes and prediction results based on GA-LSTM.
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Figure 9. Traffic volume prediction performance based on GA-LSTM model. (a) Prediction comparison
on the test set for entranceA, (b) Specific prediction resultswith intense fluctuation at short-term interval
for entrance A, (c) Specific prediction results with intense fluctuation at short-term interval for entrance
B, (d) Specific prediction results with intense fluctuation at short-term interval for entrance B, (e) Specific
prediction results with intense fluctuation at short-term interval for entrance C, (f ) Specific prediction
results with intense fluctuation at short-term interval for entrance C.
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5.4. Prediction results discussion

From the overall results of the comparative experiments, several interesting findings can
be summarized.

(1) Among all the models, in general, models considered spatial correlation express bet-
ter prediction performance, and without considering the spatial relationship, the deep
learning models achieve relatively stable prediction accuracy. At the same time, there is
not much difference betweenmachine learningmethods and statistical methods. The pro-
posed GA-LSTM model shows the best performance among all the candidate models in
comparison. In thismodel, the spatial correlation can be extracted from the combination of
networkweightmatrix and the volume transitionmatrix, and the temporal evolutionof traf-
fic can be reflected from the attentionmechanism, leading to the significant improvement
of learning ability. Furthermore, theGA is employed to search theglobal optimizationof the
attention weights, avoiding trapping in local optimization. Figure 9 shows the distribution
of the prediction results and ground truth data for three selected entrances on partial days.
Although the traffic volume collected at the urban entrance level fluctuates obviously, the
GA-LSTM model expresses a strong ability to capture sudden changes. It is worth noting
that, even in the case of intense fluctuation at short time scales, see Figure 9 (b), (d), and (f),
GA-LSTM can also quickly follow the variation and capture time-varying characteristics of
traffic flow.

(2) From the prediction results of LSTM based models, including GA-LSTM, STA-LSTM,
A-LSTM, and LSTM, the models combined with the attention mechanism can achieve bet-
ter prediction results. This is because using attentionmechanism can enhance the learning
ability of predictionmodels with long input variables. The attentionmechanism can reflect
the impact of traffic volume collected at different time steps on future traffic flow by
assigningdifferentweights to time steps. Through the importance-based samplingprocess,
the temporal evolution relationships among historical traffic flow data can be extracted
to improve the prediction performance. However, compared with LSTM, A-LSTM cannot
express significant improvement for the prediction accuracy. As we can see in the tables,
the 1-step-ahead prediction results of the three entrances, the prediction accuracy of A-
LSTM, is even lower than LSTM. The reason is that using the gradient descent search to
identify attention weights during the parameter optimization process maymake it fall into
a local optimal solution, and the optimization of the attention is difficult to converge. After
introducing the Genetic Algorithm, the RMSE values of GA-LSTM can be improved by 8.2%,
9.0%, 3.4% compared to STA-LSTM. This also proves the excellent performance of Genetic
Algorithm in attention weight optimization.

(3) When compared with the methods without considering spatial correlation, the ST-
LSTM, STA-LSTM,GA-LSTMshowstronger learning abilities, andhigher prediction accuracy.
For instance, compared with LSTM, the 1-step-ahead prediction performances of ST-LSTM
improve 11.3%, 9.7%, and 5.1% respectively for three entrances. Furthermore, in the multi-
step-ahead prediction, the improvements are more obvious by introducing the spatial
correlation into the prediction model. Additionally, from the comparison of the prediction
results of CNN and GA-LSTM, the latter expresses a stronger ability to learn spatial rela-
tionships. This because the spatial correlation mining process proposed in this study takes
into account both macro and micro features by fusing network weight matrix and volume
transition matrix.
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(4) For the multi-step prediction, the prediction accuracy of all models declines with the
increaseof theperdition time steps. Althoughall themodels affectedby the increaseof time
lags, it expressesdifferent impacts ondifferentmodels. Consistently achieving the relatively
low prediction error, predictionmodels considering spatial correlation expressmore stable
prediction performance, and the GA-LSTM model has the smallest decrease in prediction
accuracy. For instance, although the prediction performance of all the models on entrance
A declines sharply for multi-step prediction, which may be due to the strong volatility of
volumes shown in Figure 9 (b), GA-LSTM always expresses the highest accuracy. In detail,
comparedwith STA-LSTM, theMAEofGA-LSTMcanbe improved from5.4%at 1-step-ahead
and 10.1% at 10-step-ahead.

5.5. Prediction results discussion

In this subsection, we further analysis the effect of temporal, spatial information on future
traffic states prediction. We select entrance C in Figure 7 as cases.

(1) spatial effect analysis

For the spatial correlation, we first extract the network weight matrix from the macro per-
spective and volume transitionmatrix from themicro view, and then design amatrix fusion
process to combine two matrixes. Next, we select the top k entrances as the correlated
entrances for the target entrance and set their previous traffic volumes as input in the pre-
diction model. Hence, the selected correlated entrances are the critical factor in improving
prediction performance. According to the spatial relationship analysis method, we extract
the correlated entrances with entrance C and illustrate the spatial distribution of the top
5 correlated entrances in Figure 10. From this figure, we can obtain that these correlated

Figure 10. Spatial distribution of the top 5 correlated entrances with entrance C.
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entrances can be divided into two categories: directly connected entrance (entrance a and
c), non-connected entrance (entrance b, d, and e). For the former, traffic volumes of the tar-
get entrance are inflow or outflow. The traffic conditions at these locations have a direct
impact on the target entrance so that these locations can be considered as the First Neigh-
bor. Hence, this category can affect the traffic condition of the target entrance from the
actual transition relationship of the traffic flow.

Also, since there are a lot of alternative roads on the urban road network, different routes
may play a complementary or competitive role. For the second category, such as entrance
b, d, and e, vehicles are difficult to move from the target entrance to them or from these
entrances to the target entrance, leading to a weak volume transition relationship. In the
urban road network, the traffic volume at different entrances may show an association of
simultaneous increase or decrease (positive correlation), or one is rising, and the other is
falling (negative correlation). For the entrance b, it is the opposite of the target entrance
at the same intersection. Since this intersection is located on the arterial road to enter/exit
the downtown, it undertakes heavy traffic demand. So, target entrance C will also express
a similar trend with entrance b. And for the entrance d and e, it is in the same direction
as the target entrance C, so there may exist the same variation trend of traffic volume.
Although there only exist few vehicle transitions between them, their time-varying pat-
tern expresses similarity. Hence, the proposed spatial correlation mining process can not
only reflect the vehicle transition relationship but also capture the trend similarity from the
statistic perspective.

(2) temporal effect analysis

For the temporal dependency analysis, we utilize the genetic algorithm to optimize atten-
tion weights of historical volume at different time step for entrance C in Figure 7. Figure 11
illustrates the optimal attention weights searched by the genetic algorithm. According to
theoptimal attentionweights,we canobtain theeffect of historical volumeatdifferent time

Figure 11. Temporal dependencies of historical traffic volumes.
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step on future traffic prediction. Here, the left axis denotes the time steps, and the right axis
represents the legendof the attentionweights. It canbe found that previous traffic volumes
at the mid-term may overweight the short-term. It may be caused by intermittent charac-
teristics and intense fluctuation on short-term scales. Meanwhile, short-term andmid-term
traffic volumes aremore likely to have a positive effect on the future traffic states, while the
long-term express more negative correlation.

6. Conclusion

This paper presents a deep learning structure, named GA-LSTM, to predict entrance-level
traffic volume at urban intersections. The GA-LSTM method contains two essential parts:
spatial–temporal correlationmodeling process and attention-based LSTMwith theGenetic
Algorithm. In the spatial–temporal correlation analysis, the network weight matrix is
employed to capture the statistical spatial correlation from themacro perspective, and the
volume transition matrix reflects the actual traffic volume transition relationship between
entrances by extracting the vehicle trajectory. After obtaining these two matrixes, a dis-
tance measure method is employed to quantify the similarity between the target entrance
and the adjacent entrances. Then, the LSTM and GRU are stacked together, and the atten-
tion mechanism is introduced to this model to improve the ability to deal with long input
sequences. To enhance optimization efficiency, the Genetic Algorithm is utilized to search
the global optimization of the attention weights. In the prediction performance com-
parison, seven baselines, including statistical methods, machine learning methods, and
deep learning methods, are selected as candidates. Validated on the LPR system in a local
road network of Changsha, China, the experiment results demonstrate that the proposed
GA-LSTM can capture the spatio-temporal correlation effectively and achieve the lowest
prediction errors.

Future studies in this field could improve from the following aspects: (1) Improve the
matrixes fusion process. In the spatial correlation modeling, we obtain the network weight
matrix from the macro perspective and volume transition matrix from the micro perspec-
tive. How to make full use of these two matrixes will be focused in future researches. For
instance, future works may pay attention to define a fusion rule based on the fuzzy logic
theory, or utilized thematrix calculationmethod, such as convolution operation, Hadamard
product, etc., to improve the fusion process. (2) Enhance the efficiency of the evolutionary
algorithm. The researches of evolutionary algorithms are developing rapidly, and better
convergence evolutionary algorithms will be introduced into attention weight training.
(3) Achieve multi-task prediction. After fusing these two matrixes through a more effec-
tive approach, several highly correlated entrances can be clustered and trained together
for multi-task prediction. (4) Includemulti-source data to improve prediction performance.
Traffic volumes are not only affected by the historical volumes but also associated with
speed, occupancy, weather, special events, etc. The integration of multi-source data is con-
ducive to enhancing thegeneralization and robustness of thepredictionmodel. However, it
is a critical challenge to obtainmulti-source data in our studied area, and the LPR data used
in this study can only extract the traffic volume passing the intersections. In future works,
combining the speed and occupancy collected frommobile sensors (GPS devices) with the
fixed traffic detectors will be an interesting topic for citywide traffic status estimation and
prediction.
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