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1 | INTRODUCTION

Abstract

The accurate forecasting of traffic states is an essential application of intelligent
transportation system. Due to the periodic signal control at intersections, the traf-
fic flow in an urban road network is often disturbed and expresses intermittent
features. This study proposes a forecasting framework named the spatiotemporal
gated graph attention network (STGGAT) model to achieve accurate predictions
for network-scale traffic flows on urban roads. Based on license plate recognition
(LPR) records, the average travel times and volume transition relationships are
estimated to construct weighted directed graphs. The proposed STGGAT model
integrates a gated recurrent unit layer, a graph attention network layer with edge
features, a gated mechanism based on the bidirectional long short-term mem-
ory and a residual structure to extract the spatiotemporal dependencies of the
approach- and lane-level traffic volumes. Validated on the LPR system in Chang-
sha, China, STGGAT demonstrates superior accuracy and stability to those of the
baselines and reveals its inductive learning and fault tolerance capabilities.

ment and control. For travelers, accurate traffic prediction
can provide real-time traffic information, which is use-

The intelligent transportation system (ITS) has been con-
sidered a countermeasure for handling severe traffic prob-
lems in cities, such as traffic jams and air pollution. As
a critical technology in the ITS, the reliable and accurate
prediction of future traffic states is an essential component
for the release of traffic information, route guidance, traf-
fic management optimization (Hashemi & Abdelghany,
2018), and greenhouse gas emissions volume prediction
(Ganji et al., 2020). Traffic flow prediction on an urban
road network is a significant technology in the ITS, and
it is valuable for both traffic managers and travelers. For
traffic managers, traffic state perception and prediction
are playing an increasingly vital role in traffic manage-
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ful in travel guidance for avoiding congestion. Further-
more, compared with traffic flow prediction on a high-
way network, the accurate prediction of traffic flows on
urban road networks is much more difficult due to compli-
cated environments and interference, such as signal tim-
ing and the interference caused by vehicles entering and
leaving the main road. Hence, traffic flow prediction is a
vital and significant research topic to be addressed in traffic
engineering. Facing a massive amount of traffic flow data
collected from various detectors, it becomes a significant
challenge to explore the dynamic characteristics of traf-
fic flows and conduct accurate forecasting for urban road
networks.
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Since researchers first applied traffic flow prediction
models on the freeway in the 1970s (Prigogine et al., 1972),
this field has attracted increasing research attention, and
numerous emerging technologies have been developed to
improve prediction performance. Generally, existing stud-
ies focusing on traffic flow prediction fall into two cate-
gories (Y. Zhang, Cheng, et al., 2019): model- and data-
driven studies. Based on comprehensive prior knowledge,
including queuing theory (L. Li & Chen, 2013) and traf-
fic flow theory (Adeli & Ghosh-Dastidar, 2004; Y. Zhang,
Smirnova, et al., 2018), model-driven approaches estab-
lish simulation models to describe traffic flow distributions
and the decision-making processes of drivers. These estab-
lished models can reconstruct traffic conditions in the real
world and explore traffic states under different environ-
mental situations by adjusting their parameters. However,
the states of traffic flow can be affected by a large num-
ber of factors, such as extreme weather, special events,
drivers’ unique characteristics, and experience, leading
to unreasonable analysis results. In addition, due to the
different topological structures of road networks, barri-
ers exist to transferring these simulated models to other
situations.

With the rapid development of data collection technolo-
gies, data-driven approaches have become increasingly
popular due to their capabilities to explore the characteris-
tics and patterns of historical traffic flow data. These meth-
ods focus on mining the regularities hidden in historical
data to predict future traffic states instead of modeling
the dynamic behavior evolution process in the simulated
traffic system (Zhao et al., 2019). Currently, data-driven
approaches can be classified into two categories: Paramet-
ric methods and nonparametric methods.

For parametric models, the structure of a model is
predetermined by several theoretical assumptions, and
the parameters are estimated from historical data (Tang,
Li, et al., 2019). Due to their stable performances and
convenient calculations, parametric approaches attracted
researchers’ interests in an early stage of this field. Among
all the parametric methods, the autoregressive integrated
moving average (ARIMA) model and its extended mod-
els, such as the seasonal ARIMA (Williams & Hoel, 2003),
subset ARIMA (Lee & Fambro, 1999), and hybrid empiri-
cal mode decomposition (EMD)-ARIMA (H. Wang et al.,
2016), are improved approaches concerning the applica-
tion of time-series analysis for traffic prediction. In addi-
tion, other approaches, including partial least squares (W.
Li et al., 2020), Kalman filtering (Kumar, 2017; Okutani &
Stephanedes, 1984), and generalized autoregressive condi-
tional heteroscedasticity (GARCH; Y. Zhang et al., 2015),
are also widely used in traffic flow prediction. Min et al.
(2009) established a hybrid model combining the spa-
tiotemporal ARIMA with a dynamic turn ratio prediction
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model to improve the prediction accuracy of the model at
urban intersections. Zou et al. (2015) combined the space-
time model, vector autoregression, and ARIMA to forecast
traffic speeds on a freeway. J. Guo et al. (2014) proposed
an adaptive Kalman filter to update the process variances
and utilized it to implement a combination of the stochas-
tic ARIMA and GARCH. In these methods, the subsequent
predictions are determined by prior forecasts. Hence, the
prediction error accumulates during the multistep predic-
tion task. Furthermore, as these models are dependent on
the assumption that the future distribution of traffic flow
expresses a similar pattern to those of historical distribu-
tions, the prediction performance suffers sharp declines
under intense fluctuations in traffic flow data. To fill this
gap, a large number of nonparametric approaches have
been proposed to improve the prediction performances of
such models. The conventional methods used in traffic
flow prediction include artificial neural networks (Jiang
& Adeli, 2004; Jiang et al., 2005; L. Li et al., 2019; Tang
et al., 2017), support vector machines (Feng et al., 2019;
Tang, Chen, et al., 2019; Yao et al., 2017), random forests
(Hamner, 2010), and k-nearest neighbors (kNNs; L. Zhang
et al., 2013). Without the underlying stationary assump-
tions, nonparametric models can fit different traffic con-
ditions and capture the inherent relationship between the
previous information and future traffic status.

More recently, with the advances in computing perfor-
mance, many advanced deep learning models have been
widely applied for traffic flow prediction because of their
advantages of strong learning ability, accurate and sta-
ble prediction performance, and deep feature extraction.
Huang et al. (2014) proposed a deep architecture by stack-
ing a deep belief network and a multitask regression
layer, and this was the first time deep learning approaches
were applied in this field. Lv et al. (2014) established an
autoencoder model to represent generic traffic flow fea-
tures and achieved superior performance to those of tra-
ditional models. Due to the unique module of the self-
circulation mechanism, recurrent neural network (RNN)-
based models express advantages in temporal evolution
mining. Ma et al. (2015) employed a long short-term mem-
ory (LSTM) network to capture the nonlinear dynamics
in time-series traffic data. Gu et al. (2019) constructed a
two-layer RNN model consisting of LSTM and gated recur-
rent unit (GRU) for lane-level speed prediction. Since the
convolutional neural network (CNN) has a powerful abil-
ity to capture the spatial relationships between grids, it
is suitable to deal with traffic flow prediction for a mas-
sive road network. To apply CNNs in traffic flow predic-
tion, most studies (L. Liu et al., 2019; Y. Liu et al., 2020;
J. Zhang, Zheng, et al., 2018; J. Zhang, Zheng, et al., 2020;
Zheng et al., 2020) need to divide the study area into grids
first, and then treat each grid as a pixel of an image. One
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exception is the model of Dai et al. (2019) who repre-
sented the sensor network as an image and proposed
an algorithm to rearrange the order of sensors in the
image according to the correlation coefficients between
them.

In addition to the temporal evolution of traffic states,
there exist apparent spatial correlations between traffic
flows at different sections of the road network (Ermagun
& Levinson, 2019). Hence, effectively capturing spatial
dependencies can contribute to traffic flow prediction
accuracy. However, in traditional RNN models, the spatial
relationships of traffic flows are difficult to extract, while
CNN-based models are limited to Euclidean-structured
data and are inapplicable for extracting the topological
characteristics hidden in traffic networks. To integrate
road network topology into the prediction model, the
graph neural network (GNN) was introduced to capture
the spatiotemporal correlations between network-scale
traffic flows in recent years. Y. Li et al. (2017) proposed a
hybrid model to capture the spatiotemporal correlations
on a directed graph, where a random walk was utilized to
represent the spatial relationship, and an encoder-decoder
architecture was employed to capture the temporal
dependencies. Zhang, Cheng, et al. (2019) constructed a
spatial-temporal graph inception residual network) for
traffic speed prediction on a large-scale directed graph and
adopted a residual learning process and an inception mod-
ule to enhance the prediction performance of the network.
AGC-Seq2Seq, proposed by Z. Zhang, Li, et al. (2019),
utilizes the Seq2Seq structure and a graph convolutional
network (GCN) to model spatial and temporal correlations
separately and incorporates an attention mechanism to
overcome the shortcomings of multistep speed predic-
tion. However, the aforementioned GCN-based models
encounter limitations in directed graphs and inductive
learning tasks. A capable GCN variant, the graph attention
network (GAT; Velickovi¢ et al., 2017), relies on its ability
to update the importance of neighbor nodes automatically
and is also applied in traffic flow prediction (Pan et al.,
2019; Park et al., 2020; C. Zhang, Yu, et al., 2019). Compared
with the widely-used GCN framework, the GAT enhances
the capability of the network to take advantage of the
structures of directed graphs. Moreover, the GAT shows a
powerful capability to conduct inductive learning, while
GCNs cannot be applied to graphs with different topology
structures.

In summary, although numerous advanced traffic flow
prediction models have been developed in recent decades,
there still exist several challenges that have not been
addressed, and we summarize them as follows:

1. Due to signal control at intersections, traffic flows on
urban roads are intermittently interrupted, leading to
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fluctuations at short-term scales. The high-accuracy
prediction of traffic flows at the network scale is a
great challenge in traffic management. Although a few
researchers have studied this field (Do et al., 2019; Wu
et al., 2016), there are still gaps in the literature regard-
ing effective methods for predicting approach- and lane-
level traffic volumes from a network-scale perspective.

2. Existing methods tend to select the adjacent relation-
ship of the physical road network ( Cheng et al., ; Cui
et al., 2020; Guo et al., 2019; Zhang,et al., 2019; Zhao
et al., 2019) or employ the distance among all the nodes
to construct graphs for graph neural networks (Pan
et al., 2019; Park et al., 2020; Zheng et al., 2020 ). How-
ever, both the adjacency and distances are static factors.
It is difficult to reflect the actual traffic distributions
and characteristics in the road network. For instance, to
avoid traffic jams, drivers may be more likely to select
routes with longer distances but lower travel times.
Thus, it is a challenge to reflect the characteristics of
network-scale traffic flows in extracted topology graphs.

3. Existing GCN models always assume fixed spatial corre-
lations between roads, ignoring the dynamic dependen-
cies, and thus they cannot achieve inductive learning
on different graph structures. Furthermore, for GAT-
based models, few studies have considered a weighted
directed graph and the temporal dependencies of previ-
ous traffic states.

In this study, we propose a prediction framework for
approach- and lane-level traffic volumes at network-
scale urban intersections called the spatiotemporal gated
GAT (STGGAT). First, we extract the average travel time
(ATT) and volume transition matrices among all the
approaches or lanes based on license plate recognition
(LPR) records and then adopt the complex network con-
struction method proposed by Cupertino et al. (2013) to
establish a weighted directed graph, where the nodes rep-
resent detectors and edges denote connection relation-
ships. In the prediction model, GRU is utilized to replace
the linear transformation in the naive GAT and capture
the temporal dependencies of previous traffic data; we
also propose an RNN-based gated module to determine
the importance of each head in the multi-head atten-
tion mechanism. Moreover, edge features are introduced
into the self-attention aggregator of the GAT as prior
knowledge to improve the spatial dependencies. The pri-
mary contributions of this paper can be summarized as
follows:

1. We study network-scale traffic flow prediction at the
approach and lane levels based on widely equipped
LPR devices. Different from the distribution of traf-
fic flows on freeways, the density of an urban road
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network is relatively high, and there exist complicated
spatial correlations between traffic flows at different
sections. Furthermore, traffic flows collected at urban
intersections are more intermittent and intense than
those on freeways due to periodic interruptions from
signal control. These fluctuation characteristics at a
short-term scale pose a great challenge with regard to
forecasting.

2. We develop an urban road network transformation
method to transform a physical road network into
a weighted directed graph. Extracted from the LPR
records, the ATT is treated as the distance measure,
and the volume transition relationships are utilized to
reflect the interactions among intersection approaches
or lanes in the road network. An improved complex
network construction method is applied to establish a
weighted directed graph considering the ATT and vol-
ume transition. Since the graph construction measure is
data-driven, it can reflect the traffic distribution and the
characteristics of the studied road network more com-
prehensively.

3. A STGGAT is proposed to achieve network-scale traffic
flow prediction at the approach and lane levels. Based
on the constructed weighted directed graph, the edge
features are integrated into the GAT model, and we
employ GRU to extract the temporal evolution of previ-
ous traffic states. Moreover, we utilize the bidirectional
LSTM (BiLSTM) to explore the dependencies between
different heads in the multi-head attention mechanism.

4. A validation of the traffic flow prediction perfor-
mance of this model is conducted based on the
data collected from LPR devices on the urban road
network in Changsha, China, and we compare the
proposed STGGAT with other widely used models.
The STGGAT model exhibits high prediction accu-
racy and stability at both the approach and lane lev-
els. In addition, the STGGAT model also exhibits
superior performance in the conducted fault tolerance
analysis and strong capability for inductive learning
tasks.

The remainder of this paper is organized as follows.
The weighted directed graph construction method and the
problem formulation for traffic flow prediction are intro-
duced in Section 2. Section 3 describes the STGGAT model
and its components in detail. Section 4 presents the data
description utilized in this study. Section 5 compares the
performance of the proposed model with those of other
widely used baselines and explores the stability and robust-
ness of the models. Finally, we draw a conclusion about
this study and provide an outlook for future researches in
Section 6.
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2 | PRELIMINARIES
2.1 | Weighted directed graph
construction

An urban road network can be viewed as a weighted
directed graph G = (V, E, A, W), where V,E, A € RN,
and W € RVN denote a set of N nodes, a set of M edges,
the adjacency matrix, and the weight matrix, respectively.
In the traffic road network, the nodes can represent the
detectors, and the edges denote the connections between
different detectors. Specifically, since LPR devices can col-
lect traffic volumes at different levels, the nodes can repre-
sent the traffic volumes at the lane, approach, or intersec-
tion levels.

Naturally, it is easy to consider establishing a traffic
graph directly based on the connection relationships of
the road network. In several previous studies, traffic states
were estimated from taxi trajectory data, and graphs were
constructed based on adjacent relationships (Y. Zhang,
Cheng, et al., 2019; Z. Zhang, Li et al., 2019; Zhao et al.,
2019). However, limited by the location accuracy of GPS
equipment, it is challenging to obtain lane-level traffic
states. Furthermore, there are several obstacles when con-
structing a directed graph based on connection relation-
ships and LPR records:

1. In a road network with high LPR equipment coverage,
as illustrated in an example in Figure 1(a), all the lanes
in these four intersections can be transformed into the
directed graph displayed in Figure 1(b).! However, not
all intersections in the city are equipped with LPR detec-
tors. Hence, defining the connection relationships in an
area with low detector coverage, such as in Figure 1(c),
is still a critical challenge.

2. Due to traffic control measures, vehicles in different
lanes have different directions when going through
intersections, including going straight, turning left,
turning right, and going in a combination of directions.
To construct a directed graph based on connections, the
traffic direction and control measures of each lane must
be investigated accurately first.

3. In an urban road network, not all adjacent roads have
strong spatial correlations. Hence, if the graph repre-
sentation is only constructed based on the physical road
network, this may yield several useless connections,
resulting in poor prediction accuracy.

I The isolated nodes in Figure 1(b) represent specific lanes on the bound-
ary, such as “1” in Figure 1(a). Due to traffic rules, vehicles traveling in
this lane cannot reach any nodes with LPR detectors in the selected area,
nor can any vehicle traveling in another lane reach them.
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based on the physical topology

Transform the road network to a directed graph

Transforming a road network to a topology graph based
on its physical structure requires the consideration that
traffic states are positively correlated with nearby traffic
flows due to the movements of vehicles between differ-
ent sections of the road network. Vehicles traveling on
roads are most likely to access adjacent roads within a
short distance, representing “proximity in space.” In addi-
tion to the adjacent relationships, researchers have also
utilized the distances among all the nodes to construct
the highway network (Pan et al., 2019; Park et al., 2020;
Zheng et al., 2020). From the perspective of “proximity
in time,” the travel time between roads that are “proxi-
mal in space” is relatively lower than that between non-
adjacent roads. However, both the adjacent relationships
and the distances are static factors, and they cannot be
affected by the traffic characteristics of the road network.
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In real-world traffic systems, the effects of different road
infrastructure levels and traffic conditions may lead to
a nonproportional relationship between the travel time
and road length. To a certain extent, “proximity in time”
can reflect “proximity in space,” which means travel time
can express the connection relationships. Essentially, these
two graph construction methods, adjacent relationships
and distances, can be regarded as connections between
nodes that are “proximal in time.” In detail, if two roads
are adjacent, the travel time between them is relatively
short; conversely, if there is a short travel time between
two roads, then the two roads are likely to be adjacent.
Cui et al. (2019) considered the impact of traffic transmis-
sion between nonadjacent road segments and proposed a
free-flow reachable matrix to ensure the rationality of the
physical graph. In this study, we employ the travel times
and volume transition relationships between different sec-
tions in the road network to construct a weighted directed
graph.

In the following subsections, we first extract the ATT
and volume transition matrices from the LPR records, and
then employ the complex network construction method
proposed by Cupertino et al. (2013) to transform the urban
road network into a weighted directed graph.

2.1.1 | Extraction of traffic features

From the LPR records, we can obtain the collected sections
and the timestamp of each vehicle going through the inter-
sections. Hence, the vehicle trajectory during one trip can
be extracted as follows:

L=, 1p,., '}

™ ={t", t), ..., '} (1)
m m ;—

tH_1 —tl. <t,i=12,..,n—1

Here, L™ denotes the set of intersections that vehicle m
continuously passes through, " represents the collection
time of vehicle m at intersection i, and t, denotes the time
threshold that is used to divide the itinerary. In this study,
t, is set to 20 min.

Generally, travel time represents the time interval
between a specified origin and destination (Dharia &
Adeli, 2003; Ghosh-dastidar et al., 2006). In this study,
we estimate the travel time between every two records
during one trip. In detail, for a trip with p intersections,
there are (12) ) pairs of travel times between different sec-

tions. Suppose ATT € RVN, VTM € RVN denote the
ATT and volume transition matrices, respectively; then,
the proposed algorithm is summarized in Algorithm 1,
and the traffic feature extraction process is shown in
Figure 2.
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ALGORITHM 1. Traffic features extraction.
Input: Trajectory set, L={L,I’,...,L"}, responding travel
time set, 7= {T",T°,..,T"}.

Output: Travel time matrix, 477 , volume transition
matrix, VTM .
1: for all vehicles i €[1,m] do

2:  Extract the start point /| and end point /' .

3:  for the passing-by collection locations j €[l,n—1] do
4: for the passing-by collection locations & €[2,7]

5 VIM(I, L) <~ VIM(I, 1) +1

6 ATT(I, 1) < ATT(L, L) +1, —,

7 end for

8: end for

9: end for

10: ATT < ATT./VIM

2.1.2 | Road network transformation

In the existing studies related to traffic flow prediction
based on detector data, methods for transforming road net-
works into traffic graphs can be divided into two basic
approaches (Belkin & Niyogi, 2003): (1) Each node, donat-
ing a detector, is connected to its k nearest nodes, named
the kNNs. (2) Each node is connected to all nodes within a
specific distance, named the e-radius neighbors. It is noted
that the aforementioned “distance” can be both the dis-
tance in space and the correlation coefficient between dif-
ferent detectors. However, the constructed networks based
on these methods may be too dense or sparse and not
strongly connected, leading to isolated nodes.

In the field of complex networks, Cupertino et al. (2013)
combined the aforementioned kNNs and e-radius neigh-
bors methods and proposed an adaptive approach to con-
struct a strongly connected and relatively sparse network
based on the single-linkage method (Sibson, 1973). In this
study, we adopt this algorithm to transform the road net-
work into a weighted directed graph based on the ATT
matrix ATT and volume transition matrix VTM. The
framework of the road network transformation method
developed in this study is displayed in Algorithm 2.

The framework of the road network transformation method

ALGORITHM 2. Network construction method.
ATT € R™V

Input: Average travel time matrix,

hyperparameters, k, A .
Output: Directed graph G;
1: Create a non-connected network including N nodes.
2: Put each node i into a unique node group G,.
3: while the number of group > 1 do
4: Identify the nearest two node groups, denoted as G,

and G, .

5:  Calculate the average dissimilarity inside G, and G, ,
denotedas D, and D, .

6: Select the nearest k pairs of nodes between G, and
G, into node pair set 7 .

7: d, < A-max(D,,D,) .

8: for each node pair (4,%)<y do

9: if ATT($,9’)<d. then

i

10: Add a directed edge from & to & .
11:  endif
12: end for

13: Merge connected nodes into a node group.

14: Update the distance between each two node groups.
15: Update the number of the remaining groups.

16: end while

Furthermore, because future traffic volumes are pro-
foundly affected by previous traffic states (Y. Zhang,
Cheng, et al., 2019), we add a self-loop to each node. After
the directed traffic network is constructed, to extend the
established graph to a weighted directed graph, we utilize
the volume transition matrix to represent the edge weights.
For the edge from nodes i to j, the weight E;; can be calcu-
lated as follows:

VTM(, j)

Ej=og——>"—
Y Yken, VIM(i k)

2

where N; denotes the set of all destinations beginning from
node i. Supposing that the historical traffic data of each
node may have the most influential effect on its future
traffic states, we set the weights of the self-loops to 1. As
mentioned above, for adjacent roads in the physical road
network, not only is the traffic state on adjacent roads
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proximal in space and time, but the transition volumes
are also relatively numerous. Similarly, the edge weights
can achieve importance-based sampling between the tar-
get road and the adjacent roads, where edges with larger
transition volumes are regarded as more vital.

2.2 | Problem formulation

Generally, network-scale traffic flow prediction aims at
exploring the spatiotemporal dependencies hidden in
previous traffic data to predict future traffic volumes.
Assuming x;' represents the traffic volumes collected from
detector i at time ¢, the traffic flow prediction prob-
lem can be summarized as follows: Given the historical
traffic data of the road network with N detectors X, =
{x!, X2,..., X"} in the previous s time steps (where X! =
{Xi_gi15 Xi_s420 > X;}) and a specific graph structure G,
we aim to learn a mapping function f for estimating the

future traffic volumes y, 1 = {x/, , xZ ..., x\ }:

f i (GX) = Y (3)
3 | METHODOLOGY
3.1 | Framework of the prediction model

Figure 3 illustrates the architecture of the proposed STG-
GAT model for short-term traffic flow prediction on urban
road networks. In summary, the STGGAT model consists
of four components: A GRU layer, a GAT layer, an RNN-
based gated mechanism, and a residual structure. First,
GRU is utilized to improve the ability of the model to
capture the temporal correlations in the historical traffic
data. Then, we incorporate the edge features into the naive
GAT model to enhance the spatial dependencies between
different sections in the constructed weighted directed
graphs. The RNN-based gated module is employed to
determine the importance of different heads in the multi-
head attention mechanism. Moreover, we adopt the resid-
ual connection structure to accelerate the training process
and improve the convergence efficiency. Each component
module of the proposed STGGAT model is described in the
following subsections in detail.

3.2 | Spatial dependencies

In this subsection, we employ the GAT to capture the spa-
tial dependencies in the urban road network. This type of

Average travel
time
Volume transition
matrix

STGGAT for network-scale traffic flow prediction

t-s+1 t-s+2 t

v ¥ ¥ v
[Gru | [ GrU | [ - | [ GrU |

__4?

| GAT aggregator | |

Layer | | Residual structure

Gated mechanism I l

||_ _G/G aggregtllor_ _||

Residual structure

Gated mechanism | I
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[ Gatedmechanism_

| Future traffic volume |
e =

FIGURE 3 The spatiotemporal learning framework for
network-scale traffic flow prediction

network has achieved success in numerous tasks, includ-
ing computer version (Bao et al., 2019) and recommenda-
tion systems (X. Wang, He, et al., 2019). Compared with the
GCN model, which is widely used in traffic flow prediction,
there are several superiorities inherent in the GAT: (1) It
can achieve the assignment of different weights to different
neighbors, leading to advantages in dealing with directed
graphs. (2) The model parameters are related to the fea-
tures of each node instead of the structure of the graph.
Hence, the GAT can be applied to inductive learning tasks.
In other words, we can utilize the model trained on a spe-
cific road network to predict future traffic states on other
road networks.

Assume the input features of node i at layer [ in the
GAT are denoted as hl@. Specifically, hgl) represents the
input previous traffic states X!, which are defined in Sec-
tion 2.2. The detailed formulation of the GAT (Veli¢kovié¢
et al., 2017) at layer [ is introduced as follows:

Z(l) — W(l)hgl) (4)

i

0 _ >1r,, Dy, D
e = LeakyReLU(a" [z, ||zj D) (5)
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0]

0 0 exp(e;;)

@ = softmax(e )= —(l) (6)
ZkeN eXp(e )
h(l+1) — O'( Z OC(l) (l)) (7)
JjeN;

LeakyReLU(x) = { ©* ¥ =0 (8)

y “"la-x, x<0

Here, WO is a learnable weight matrix that aims to
increase the dimensionality of the input, @’ is a single-
layer feedforward neural network that acts as a self-
attention mechanism, || represents the concatenation
operation, and o(-) represents the activation function for
applying a nonlinearity. In this study, the negative input
scope of LeakyReLU adopts the setting (o« = 0.2) as in
Velic¢kovi¢ et al. (2017).

Moreover, to enhance the optimization stability during
the training process of the self-attention mechanism, a
multi-head attention mechanism is applied by the follow-
ing equation:

Zk 1ZJ€N z(j)k ,({l)h(l)) output layer

(+1) _
i 1 D
! k!1 O'(Z]EN l(])kW( )h()), else
l l C))
where oc() and W() represent the normalized attention

ij, k
coefficients and welght matrix in the k-th head, respec-

tively. In addition, the number of heads is set to K.

In Section 2.1, we propose a road network transforma-
tion method to transform the urban road network into a
weighted directed graph. It is noted that the edge features
are ignored in the GAT layer mentioned above. Hence, to
take advantage of the edge features, we introduce the edge
weights E of the constructed weighted directed graph as
prior knowledge to improve the process of calculating the
attention weights. Furthermore, introducing the edge fea-
tures into the GAT layer can also reduce the impacts of the
useless connections caused by construction errors:

exp(Ej; - €;j)

(10)
Zien, SXP(Eik - ei)

Olij=

3.3 | Temporal dependencies

In Equation (4), the lower-level features are mapped into a
high-dimensional space through a linear transformation.
It is noted that the input features of each node are traf-
fic states of the previous s time steps so that they can be

@ TANG AND ZENG
regarded as time series. As fully capturing the time-varying
characteristics of the traffic flow is the key to accurately
predicting future traffic states, this linear transformation
strategy is unable to adequately explore the temporal evo-
lution of the input features. In the field of time series pro-
cessing, RNNs and their widely used variants, LSTM and
GRU, have been applied in existing studies. Because GRU
is simple to compute and easily converge (Cho et al., 2014;
Gu et al., 2019; Zhao et al., 2019), we utilize them to trans-
form the input features into higher-level features instead
of using a linear transformation, aiming at capturing the
temporal dependencies of traffic flows effectively.

Specifically, if the input features of the graph are denoted
as F € RNX" where N is the number of nodes, and r rep-
resents the number of previous time steps, the output of
Equation (4) can be written as F/ € RN, ¥/ > r. The lin-
ear transformation utilizes a learnable weight matrix W €
R™ to map the input features into r’-dimensional space.
When GRU is used, the input features are reshaped as F €
RNXrX1 first. Assuming that the number of hidden units in
the GRU is set as g, the dimension of the output is RV*"™*8,
it can be reshaped as a 2D tensor RV x(r<g¢) which can also
achieve higher-level feature transformation.

There are two components in a GRU block: A reset gate
r, and an update gate z,. The former is utilized to discard
historical information that is unrelated to future states, and
the latter can help to capture long-term dependencies in
time series. Given an input feature q;, the GRU layer can
be expressed as follows:

e = U(quqt + W, H 1 + br) 1)

Zr = U(quqt +WoH 1+ bz) (12)

Hy = ¢(Wheq; + Wpp(r © H;_y) + by) (13)

H=z0H_,+0-z)0H, (14)
()= ——— (1s)
A= TT exp(—x)

exp(x) — exp(—x)

() = exp(x) + exp(—x)

(16)
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FIGURE 4 Multi-head attention with recurrent neural network-based gated mechanism

where H, denotes the hidden states at time ¢, and W, b are
the weight matrix and bias, respectively.

3.4 | Gated mechanism
Since the multi-head attention mechanism can aggre-
gate information from multiple representation subspaces
(Vaswani et al., 2017), the training process can be highly
stable. However, it regards the importance of all subspaces
as equal, ignoring the differences between different heads.
Moreover, when the multi-head attention mechanism is
applied on graphs, the representation subspaces of spe-
cific nodes may not even exist (J. Zhang, Shi, et al., 2018).
As illustrated in Figure 4(a), in the multi-head attention
mechanism, the input features are fed into K different
heads, and K outputs are obtained. J. Zhang, Shi et al.
(2018) employed a CNN-based gated aggregator to deter-
mine the importance of each node at different heads for
graph learning. However, the proposed CNN-based gated
aggregator only relies on neighboring information, ignor-
ing the interactions in the multi-head mechanism. In this
study, we treat the outputs of different attention heads as
sequence data and propose an RNN-based soft gated mech-
anism, which is shown in Figure 4(b), to determine the
importance of each head. In this way, the outputs of each
head through the gated mechanism are not only deter-
mined by themselves but are also impacted by other heads.
As there is no specific direction for the information
dissemination process among all the attention heads, we
employ the BILSTM to reflect the interactions within them.
Different from LSTM, the BiLSTM adds a hidden layer that
allows information to pass from back to front, enhanc-
ing its ability to handle backpropagated information. Addi-
tionally, after passing through the gated layer, all the out-
puts of the BILSTM are fed into Equation (9). Here, the out-
put dimension of the BiLSTM layer is the same as that of
its input.

Supposing that g, denotes the output of head ¢, the
details of the naive LSTM layer are written below:

I, = o(Wigg, + WinH,_y +by) a7
Fy=0(Wgeg + WyepH;_y + by) (18)
0, = 6(Wogg: + WopH_y + by) (19)
Cr = ¢(Weeg: + WepH, 1 + b) (20)
C,=F,0C_1+,0C (21)

H;, =0, ® ¢(Cy) (22)

Here, I;, F;, O;, C;, and H; denote the input gate,
forget gate, output gate, memory cell, and hidden state,
respectively. Based on this directional LSTM, the BiLSTM
achieves the bidirectional propagation of information by

calculating H . and H;, where “—” and “«” denote the for-
ward and backward directions, respectively. After obtain-
ing these two hidden states, the hidden state H, can be gen-

erated by concatenating H cand H,.

3.5 | STGGAT

In this study, a deep learning framework named STGGAT
is proposed for traffic flow prediction on urban road net-
works. To extract the spatiotemporal dependencies from
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the constructed weighted directed graphs, STGGAT inte-
grates a GRU layer, a GAT layer, and an RNN-based gated
mechanism. We also adopt a residual structure (He et al.,
2016) to accelerate the convergence of the proposed STG-
GAT model.

Suppose that (x) denotes the ideal mapping for pre-
dicting the target values y based on the input features x.
The aim of the residual structure is to fit the residual map-
ping (x) — x. The residual structure opens a highway that
allows the input to be directly propagated to the output. Its
core innovation is allowing the information to span several
layers, thereby improving the forward speed of informa-
tion. Therefore, in practical applications, residual mapping
is easy to optimize and captures the subtle fluctuations of
identity mapping.

After fully expanding all terms, the proposed STGGAT
model with a residual structure can be formulated as fol-
lows:

0
0 GRU,"(x), [=1
TF,(x) = 23

e () {W]({l)x, I>1 )

o exp(E;; - LeakeyReLU(@'[TF, (h{")||TF,(h{")]))

ijk = -,
/ Y e, XP(E;, - LeakeyReLU(A'[TF,(h")| | TF(h{)]))
(24)

O Y 4O OO
SFi, = D o) - TR (W) (25)
JEN;

0 =0 =0,
SF;” ={SF; 1,...,5F, x} = BILSTM(SF", ..., SF'>

(26)

o(= ZIk{:l SF fl;)() + Wﬁle)shgl), output layer
hi(Hl) — KK 0 o0
k| |1 o(SF;y) + Wyesh,”, else

(27)

Here, Wﬁg is a learnable weight matrix used to make
the dimension of input features equal to that of the
outputs.

In summary, compared with the naive GAT model, the
proposed STGGAT model expresses a more powerful capa-
bility to extract spatiotemporal dependencies. For the tem-
poral correlations, a GRU layer is employed to mine the
dynamic variation characteristics among the previous traf-
fic states. For spatial relationship modeling, edge features
are introduced into the self-attention mechanism as prior
knowledge. Moreover, an RNN-based gated module is pro-
posed to determine the different importance within the
multi-head attention mechanism.
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FIGURE 5
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4 | DATA DESCRIPTION

The dataset used in this study was collected by the LPR
system in Changsha, China. Based on video processing
technologies, LPR devices can obtain collection times, car
numbers, directions, lane numbers, and so forth. Due
to their ability to obtain full samples at intersections
and extract traffic states such as average speed, travel
time, vehicle trajectory, and so forth, LPR devices have
been widely used in travel behavior analysis (H. Chen
etal., 2017) and origin-destination pattern estimation (Rao
et al., 2018). From the LPR records, three scales of traf-
fic states can be obtained: Lane-level, approach-level, and
intersection-level. It is obvious that the micro traffic vol-
umes express more fluctuations and variations, while the
macro volumes are more stable. In this paper, traffic vol-
umes in a local road network in southern Changsha,
illustrated in Figure 5, are selected for the experiment
in this case study. This area contains 19 intersections,
64 approaches, and 301 lanes, including arterial roads,
secondary trunk roads, and branches. Considering their
potential assistance in the applications of traffic guid-
ance and control, we select traffic volumes at the lane
level and approach level for analysis. From the monthly
average daily traffic (MADT) distributions, illustrated in
Figure 6, traffic flows on urban roads are generally not very
heavy, and approach-level traffic volumes are much higher
than those at the lane level. The selected LPR dataset was
collected from July 1 to 31, 2019, and consists of 19,441,883
records in total. All license plate information is masked
to protect drivers’ privacy. We aggregate the 5-min traffic
volumes at the lane and approach levels and impute the
missing data using historical average volumes before per-
forming predictions. To evaluate the performance of the
proposed model, we divide the dataset into a training set,
validation set, and test set at a ratio of 60%: 20%: 20%. Here,
the training and validation sets are employed for model
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FIGURE 6 Monthly average daily traffic distribution in the selected area

training and hyperparameter tuning, and the test set is uti-
lized for the final model performance testing.

5 | EXPERIMENT

5.1 | Performance metrics

To evaluate the performance of the prediction model, we
employ three indicators to measure the error between the
ground truths and predictions, namely, root mean squared
error (RMSE), mean absolute error (MAE), and mean
absolute percentage error (MAPE):

RMSE = - y;) (28)
i=1 j=1
1 n N
MAE = 5 3 3 |5} -] @)
i=1 j=1
n N |&J J
_ 1 yi _yl
MAPE = — ;; " x 100%  (30)
—JT i

In the above equations, yl.] s j/ij , N and n represent the
ground truths, predictions, number of detectors, and num-
ber of test samples, respectively. Specifically, the smaller
the values of these three indicators are, the higher the pre-
diction accuracy.

5.2 | Determination of the model
parameters

For the temporal dimension of the input data, the num-
ber of previous time steps s is set as 10. Adam (Kingma

& Ba, 2014) is adopted as the optimizer with a learning
rate of 1073, and we employ the mean square error as
the loss function. Limited by the memory of the GPU, we
set the batch size of the approach-level prediction as 128
and that of the lane-level prediction as 16. In the weighted
directed graph construction method, the hyperparameters
k and 1 have an essential impact on the sparseness of
the graph and the node degrees. In detail, if the graph
is too dense, it may introduce several worthless edges;
otherwise, if it is too sparse, some critical information
may not be delivered. Furthermore, the hidden dimen-
sion of the GRU, I, also plays a vital role in determining
the prediction accuracy. Hence, to select the best hyperpa-
rameters for the proposed prediction framework, we care-
fully apply a grid search strategy on k € {1, 3, 5,7, 10} and
1 € {16, 20, 24,28, 32}. For 4, we follow (Cupertino et al.,
2013) and set it as 3. After the grid search process is com-
pleted, k = 3, | = 28 are selected as the best hyperparame-
ters. Based on the hyperparameters obtained for these set-
tings, the properties of the constructed graph are shown in
Table 1. In addition, Figure 7 illustrates the ATT matrices
of different sections in the road network. The ATT matri-
ces shown in Figures 7(b) and (d) only represent the ATT
between connected sections, and they can be calculated by
ATT © A, where ATT and A denote the ATT and adja-
cency matrices, respectively. It is found that the road net-
work transformation method plays the role of a travel time
filter, which only allows nodes that are “proximal in time”
to connect.

5.3 | Performance comparison

In this subsection, the proposed STGGAT model is com-
pared with other widely used traffic flow prediction mod-
els, including statistical methods, machine learning meth-
ods, and advanced deep learning methods. The following
is a brief introduction to these baseline models, where the
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TABLE 1 The properties of the constructed graph
Approach-level Lane-level
Node number 64 301
Edge number 208 1053
Average degree 6.50 7.00
Density 0.05 0.01
Average clustering 0.20 0.09
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FIGURE 7 Average travel time between different road sections

grid search strategy searches the hyperparameters of all the
models.

1. ARIMA: Autoregressive integrated moving average
(ARIMA) is one of the most widely used statistical mod-
els in traffic flow prediction. The parameters of ARIMA
are estimated from the maximum likelihood estima-
tion by the Statsmodels package (Seabold & Perktold,
2010) in Python. In addition, the hyperparameters of the
ARIMA model are set as p =5, d =0, q = 4 for both
tasks.

2. BPNN: A three-layer backpropagation neural network
(BPNN) is established, and it consists of an input layer, a
hidden layer with ReLU as the activation function, and
an output layer. Specifically, the number of hidden units
in the hidden layer is set to 64 for approach-level predic-
tion and 240 for lane-level prediction.

3. LSTM: This is the LSTM network (Ma et al., 2015)
described in Section 3.4. The numbers of hidden units
of LSTM are set to 320 for both prediction tasks.

4. GCN: This is the naive GCN (Kipf & Welling, 2016).
The number of hidden dimensions is set to 240 for
approach-level prediction and 200 for lane-level predic-
tion.

5. GAT: This is the naive GAT (Veli¢kovi¢ et al., 2017)
described in Section 3.2. The numbers of hidden dimen-
sions are set to 120 and 240.

6. LSGC-LSTM: This is a two-layer stacking model com-
bining the localized spectral graph convolution neural
network (LSGC; Defferrard et al., 2016) with an LSTM
layer. In this study, the hop of the graph convolution
operation is set to 3, and the number of hidden units
in the hidden layer is set to be equal to the number of
nodes, N.

7. T-GCN: The temporal GCN (T-GCN), proposed by
Zhao et al. (2019), combines the GCN with GRU. The
T-GCN is implemented based on the source code on
GitHub.” The numbers of hidden units are set to 240
and 200 for these two prediction tasks.

8. TGC-LSTM: This is the traffic graph convolutional
RNN (TGC-LSTM) proposed by Cui et al. (2019). We uti-
lize the source code® shared by the authors to construct
this prediction model. We utilize the travel time matrix
to calculate the free-flow reachable matrix instead of the
free-flow speed. The number of hidden units in the hid-
den layer is set to be equal to the number of nodes, N.

Among the baselines, all the GNN-based models are
applied on the directed graph without edge weights based
on the road network transformation method proposed
in Section 2.1.2. All the experiments are conducted on
Python 3.6.10 with a Windows workstation (RAM: 32GB,
CPU: Intel Core (TM) i9-9900K @ 3.6 GHz, GPU: NVIDIA
2080Ti). The proposed STGGAT model is implemented
utilizing the open-source GNN framework Deep Graph
Library (DGL; Wang et al., 2019) with MXNet (Chen et al.,
2015) as the backend. In addition, all the deep learning
methods are trained with an early stop strategy to avoid
overfitting. Table 2 shows the prediction performances of
the aforementioned models for both approach- and lane-

2 https://github.com/lehaifeng/T-GCN.
3 https://github.com/zhiyongc/Graph_Convolutional _LSTM.
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TABLE 2 Prediction performance of different models for both approach-level and lane-level prediction
Approach-level Lane-level
Model RMSE MAE MAPE (%) RMSE MAE MAPE (%)
ARIMA 8.320 4.995 39.896 2.891 1.803 43.535
BPNN 8.436 5.044 39.536 2.918 1.814 43.254
LSTM 8.553 4.974 34.726 2.902 1.775 41.392
GCN 13.533 6.261 37.334 3.883 1.991 44.145
GAT 8.164 4.868 35.782 2.885 1.779 40.405
LSGC-LSTM 10.251 5.340 39.915 2.941 1.806 42.707
T-GCN 11.612 8.363 129.262 3.593 2.446 76.596
TGC-LSTM 8.547 4.867 34.812 3.005 1.863 43.566
STGGAT 7.732 4.546 31.800 2.828 1.742 39.462
_— IGroun(l truth — Ground truth 400 ¢ -_— IGrouncl truth -
; ——— STGGAT . --- STGGAT . --- STGGAT
< 100 f g 40 £ 500}
e S 3
g & o 200
& 50 1 & 20f &
< s <
& & & 100}
00 100 200 00 100 200 00 100 200
Time of day Time of day Time of day
(a) approach with high volumes (b) approach with low volumes (c) approach with abrupt volumes
40 v v . . ‘ '
- (‘iruuml truth 40— Ground truth
® --= STGGAT " --- STGGAT "
Z30f 1 g =
E 2 30 1 E100
o = =
> 20F £ 2 S
9 ) ] Q
~ 10 — ] =~
& &= 10 = —— Ground truth
--- STGGAT
0 A — 0 L 0 . L
0 100 200 0 100 200 0 100 200
Time of day Time of day Time of day
(d) lane with high volumes (¢) lane with low volumes (f) lane with abrupt volumes
FIGURE 8 Comparison of ground truths and predicted results on July 31, 2019

level predictions, where the indicators with the best perfor-
mances are marked in bold. Prediction comparisons of six
selected case studies involving different traffic conditions,
including high, low, and abrupt volumes, are displayed in
Figure 8. From the overall prediction results, several criti-
cal conclusions can be drawn below:

1

The proposed STGGAT model expresses superior accu-
racy to those of baselines due to its powerful ability to
perform spatiotemporal dependency extraction. Specif-
ically, the temporal evolution can be captured by the

GRU layer, and the spatial correlations can be mined by
the GAT aggregator and prior edge features. For lane-
level prediction, as the total traffic volumes of each
lane at a 5-min scale are generally low (shown in
Figure 6(b)), the prediction errors of all the
models are relatively low and similar. It is also
noted that the naive GCN and its variants, LSGC-LSTM
and T-GCN, have much lower accuracies than those
of other models. The reason for this may be caused
by the poor ability of these models to capture intense
fluctuations in traffic flows on urban roads. In terms of



8.2
8.1
m 8 =
E <
& 7.9 -
7.8
77 T "‘ ’GRU T e‘%‘“\ T ,‘“ed T AT
GAY GATHOGRTFWEGATHE TG0
Model
(a) approach level
2.89 . : : - :
1.78
—s—RMSE ,
2.88"‘ 7\ o &
--o--MAE | -\ Sl
2.87 1 e ‘
m ] \ D e
B 2.86 ./ \_ \ -
E 2.85- =
2.84
2.831 ,
F1.74
2.82 : PV NIT SR ST
GAT GATFOR AT i rreerGGh
Model
(b) lane level
FIGURE 9 Component analysis of spatiotemporal gated graph

attention network (STGGAT)

the TGC-LSTM, as the free-flow speed matrix plays a
vital role in filtering the useless spatial information and
recognizing the influential road segments, it achieves
a relatively accurate performance among the GCN
models.

To explore the effects of the components in STGGAT,
the prediction performance of each component is illus-
trated in Figure 9. According to Figure 9, all the compo-
nents utilized in STGGAT can improve the prediction
accuracy of the naive GAT. Among all the components,
since it introduces the volume transition relationships
as prior knowledge, the GAT with edge weights obtains
the largest improvement over the naive GAT. This may
be because there exists a robust, strong spatial corre-
lation in the urban road network that even outweighs
the temporal evolution, and it can be extracted by the
weighted directed network construction method devel-
oped in this study. Furthermore, the GAT with GRU

@ TANG AND ZENG
can capture the temporal evolution characteristics in
the historical traffic data, and the proposed RNN-based
gated module is effective in distinguishing the impor-
tance of each head in the multi-head mechanism. In
total, these components can explore the characteristics
of traffic flows from different perspectives, leading to
an accurate and stable prediction performance for STG-
GAT.

. The multistep prediction results are illustrated in

Figure 10. From Figure 10, we can see that for all the
models, the prediction errors increase as the forecast
time step increases, and STGGAT consistently achieves
relatively high and stable performances. As shown in
Figure 10(a), for the 10-step prediction of approach-
level traffic volumes, the TGC-LSTM achieves higher
accuracies than those of STGGAT. This may be because
the TGC-LSTM utilizes a k-hop sampling strategy, so
not only the information pertaining to the adjacent
roads but also that of k-hop roads can be fed to the pre-
diction model, while the GAT-based model only uses
the first neighbor. Furthermore, as the spatial depen-
dencies in the road network play an important role
in accurate traffic flow prediction, models considering
spatiotemporal correlations express more stable perfor-
mances than those of models that only include temporal
evolution. Although ARIMA and BPNN perform well in
the one-step prediction of fluctuating traffic conditions,
the prediction performances of these methods are not
stable for long prediction steps. For ARIMA, the subse-
quent predictions are determined by the prior predicted
results, so the prediction error of the multistep model
accumulates continuously.

. Although the performance indicators in Table 2 show

the prediction performances from a network-scale per-
spective, it is also necessary to further evaluate the
prediction error of each node. Figure 11 illustrates the
RMSE and MAPE distributions of STGGAT in terms of
prediction at the approach and lane levels. Overall, the
prediction error distributions of these two tasks show
similar trends: The RMSE is concentrated at a low level,
while the MAPE presents an approximately symmet-
rical distribution. Specifically, the RMSEs of approxi-
mately 90% of the approaches and lanes are lower than
15 and 6, respectively. For the MAPE, the symmetry axis
of MAPE is 32% for approach-level and 45% for lane-
level prediction tasks. Moreover, it is noted that the dis-
tribution of RMSE is consistent with the MADT dis-
tribution in Figure 6. This reveals that the prediction
RMSE is profoundly affected by traffic volume mag-
nitude. Figure 12 illustrates the boxplot of RMSE and
MAE distributions of all the approaches and lanes. For
the approach-level prediction, the abnormal values of
the proposed STGGAT model, especially the maximum
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error, are much lower than those of all the other mod-
els. Thus, STGGAT exhibits a superior prediction capa-
bility to those of other models in intense situations
and for high volumes. Additionally, based on the lower
and upper quartile values, STGGAT also outperforms
other models, and this further proves the effectiveness
of the proposed model. From Figures 12(c) and (d), STG-
GAT has fewer abnormal data points than other mod-
els, and these outliers are closer to normal values. In
summary, although the approach- and lane-level traf-
fic volumes exhibit strong fluctuations, the proposed
STGGAT model can improve upon the prediction per-
formances of baseline models by mining the spatiotem-
poral dependencies of the urban road network.
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FIGURE 13
approach-level prediction

Perturbation and robustness experiments for

5.4 | Fault tolerance analysis

In the application of a data-driven traffic flow predic-
tion model, it is inevitable that we will encounter the
missing data problem, which usually leads to incorrect
predictions and responses (X. Chen et al., 2019). To fur-
ther explore the robustness of the proposed STGGAT
model to perturbations, we insert random noise and
stochastic missing data into the LPR dataset and vali-
date the fault tolerance of STGGAT. Specifically, the Gaus-
sian distribution P € (0, ¢2), o € {0.5%, 1%, 2%, 3%, 5%}
of the average volumes and the missing rates 7 €
{10%, 20%, 30%, 40%, 50%} are utilized to generate the
dataset for this robustness analysis.

The robustness analysis for approach-level traffic pre-
diction with regard to perturbations is illustrated in
Figure 13. Under noise situations, all GNN models achieve
relatively stable performances, and STGGAT always out-
performs the other methods, demonstrating that these
models are less impacted by noise data than the other
models. In terms of missing data situations, the predic-
tion accuracies of all the models decline gradually as
the rate of missing data increases. Similarly, STGGAT
obtains the best prediction results, indicating that it is
more fault-tolerant than other GNN models. However,
although STGGAT is superior, missing data are still a crit-
ical factor that has a significant impact on forecasting
accuracy. In practical applications, it is necessary to per-
form effective missing data imputation before performing
predictions.
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FIGURE 14 The selected local road network to compare the
prediction performance of the constructed graph and the physical
network
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FIGURE 15 Prediction performance on the constructed graph

and the physical road network

5.5 | Road network transformation
analysis

This study develops a road network transformation
method to construct weighted directed graphs for the pur-
pose of enhancing spatial dependencies. It is necessary
to conduct a comparison experiment on the constructed
graph and the physical network to evaluate whether this
method is useful for traffic flow prediction. However, the
road network shown in Figure 5 is too sparse to construct a
topology graph based on the adjacent relationships. Thus,
we select a local road network in northern Changsha, illus-
trated in Figure 14, to establish the adjacency-based topol-
ogy graph for approach-level traffic flow prediction. To dis-
tinguish between these two graphs, we call them the con-
structed graph and the physical network.

Although LPR devices in this area are densely equipped,
there still exist several intersections without detectors.
When establishing the adjacency-based graph, we ignore
the turning options, so only the driving decision to go
straight is considered. Figure 15 shows the comparison of
all the GNN-based model predictions on these two graphs.
We can see that the constructed graph always outper-
forms the physical network in terms of prediction accuracy,
and the proposed STGGAT model consistently achieves
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TABLE 3 The properties of the constructed graph and the physical road network
Constructed
graph Physical network
Node number 27 27
Edge number 88 70
Average degree 6.52 5.19
Density 0.13 0.10
Average clustering 0.24 0.00

oK

(a) constructed graph using the (b) physical network

proposed method

FIGURE 16
and the physical network

The topology structure of the constructed graph

the best performance. Furthermore, from the properties
and topological structures of these two graphs (shown in
Table 3 and Figure 16), we can find that the constructed
graph is denser than the physical network. More interac-
tions exist among the neighbors according to the values of
average clustering. This interesting finding demonstrates
the constructed graph’s superior ability to that of the phys-
ical network with regard to extracting the spatial depen-
dencies of the urban road network. The reason for this may
be that the constructed graph has a more substantial capa-
bility than that of the physical network for spatial depen-
dency mining by connecting correlated nodes.

5.6 | Inductive learning

Compared with the GCN, a major advantage of the GAT
lies in its ability to perform inductive learning tasks. It can
achieve accurate prediction results on graphs whose struc-
tures do not appear in the training set. In the traffic flow
prediction task, it can be said that a GAT model pretrained
on a specific road network can be applied on another road
network. This is an extremely difficult task for a GCN but
one that is useful in real-world applications. In this sub-
section, to explore the inductive learning ability of the pro-
posed STGGAT model, we employ the pretrained STGGAT
on the road network shown in Figure 5 to predict the traffic
volumes at the approach level for the road network illus-
trated in Figure 14.

The prediction results of different models are shown
in Table 4, and we denote the inductive learning predic-
tions of the GAT and STGGAT as GAT-i and STGGAT-
i, respectively. Different from the calculation operations
on the Laplace matrices of graphs such as the GCN, the
weights in the GAT only rely on the node features. There-
fore, the GAT can be applied to graphs with different struc-
tures without undergoing training again. From the induc-
tive learning prediction performance, it can be seen that
the GAT-based models achieve relatively acceptable accu-
racy compared with those of the baselines. In addition, the
STGGAT-i model also outperforms the GAT-i model. This
may be because the STGGAT model introduces edge fea-
tures into the prediction model as prior knowledge, so the
actual traffic characteristics of the newly seen road net-
work are involved in the prediction model. Thus, STGGAT
may reduce the dependence of prediction results on model
parameters, leading to a stronger generalization ability
than those of other models.

6 | CONCLUSION

Due to the presence of complicated spatiotemporal depen-
dencies, the accurate prediction of network-scale traffic
volumes at intersections is a significant challenge. This
paper presents a forecasting framework, the STGGAT, to
fill this gap and predict approach- and lane-level traf-
fic volumes at urban intersections. A complex network
construction method is employed to transform an urban
road network to a weighted directed graph based on the
ATTs and volume transition relationships between dif-
ferent approaches or lanes. The proposed STGGAT inte-
grates four essential components: A GRU layer, a GAT, an
RNN-based gated mechanism, and a residual structure. In
detail, GRU is introduced to transform the input features
into high-level features and capture the temporal evolu-
tion of the traffic volumes. The edge weights extracted from
the volume transition relationships are aggregated to the
attention coefficients as prior knowledge, with the aim of
enhancing the capability of GAT to deal with edge informa-
tion. Moreover, a BILSTMlayer is adopted to determine the
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TABLE 4 Prediction performance of different models on the local road network shown in Figure 14

Model RMSE
ARIMA 6.518
BPNN 6.560
LSTM 6.585
GCN 7.670
GAT 6.473
LSGC-LSTM 6.622
TGC-LSTM 6.283
STGGAT 6.129
GAT-i 6.669
STGGAT-i 6.535

MAE MAPE (%)
4.260 37.663
4.279 37.664
427 35.972
4.745 42217
4217 39.569
4272 38.497
4.090 37.216
3.970 35.347
4312 40.152
4.163 36.300

Note: GAT-I and STGGAT-I are inductive learning predictions of the GAT and STGGAT.

importance of different heads in the multi-head attention
mechanism. The residual structure is utilized to accelerate
the convergence process.

Validated on the LPR system in Changsha, China, the
proposed STGGAT is compared with several baselines,
including statistical models, machine learning methods,
and advanced graph neural networks. The experimental
results demonstrate the superior accuracy of STGGAT in
terms of both approach- and lane-level prediction tasks
and its stability in multistep prediction. Through a fault
tolerance analysis regarding noise and missing data, the
robustness of STGGAT is also demonstrated. Furthermore,
by validating it on a small road network in a different struc-
ture, we find that the STGGAT model can achieve accept-
able performance on an inductive learning task and prove
the graph construction method’s superior effectiveness to
that of the physical road network. From the overview of
this study, several interesting conclusions can be summa-
rized.

1. The intermittent interruption effect of signal control
at urban intersections leads to approach- and lane-
level traffic volumes exhibiting extreme fluctuations.
In this case, traditional traffic flow prediction methods
may encounter bottlenecks, especially in multistep pre-
diction, while the models considering spatiotemporal
dependencies achieve stable and robust prediction per-
formances.

2. Although many deep learning models have been pro-
posed to address traffic prediction, we need to explore
traffic characteristics to make the models optimally suit-
able for traffic problems. For instance, there are several
differences in the spatial dependencies between adja-
cent roads under the combined effects of multiple fac-
tors. This is a critical issue, but it is overlooked in many
studies. To fill this gap, this study proposes a road net-
work transformation method to construct a weighted

directed graph based on the extracted ATTs and vol-
ume transition relationships. This method allows nodes
with low travel times to be connected and determines
each edge’s importance by its volume transition rela-
tionships. In this way, the constructed graph is highly
suitable for solving traffic volume prediction issues.
According to the experimental results, this method
can improve the network-scale traffic prediction perfor-
mances of existing models.

3. Inductive learning is another concern in traffic flow
prediction research. A prediction model with inductive
learning ability could not only reduce training costs sig-
nificantly but also save storage space. Although the pro-
posed STGGAT model achieves good prediction perfor-
mances on inductive learning tasks, it still needs further
improvements.

There are several potential extensions for future stud-
ies in this field. For instance, traffic volumes are affected
by multiple factors, such as traffic accidents and weather.
In this study, only historical traffic volumes and spa-
tial dependencies are adopted in the prediction model.
Moreover, the high-frequency fluctuations at the short
scale make achieving accurate traffic volume predictions
at urban intersections a significant challenge. It would
be an interesting topic for future works to improve the
prediction performance by introducing several denoising
methods, such as wavelet theory (Adeli & Karim, 2005)
and ensemble EMD (Zhang et al., 2020). Besides, many
researchers also explored the characteristics of traffic flow
time series from their complex network structures (Yan
et al., 2017). Exploring the complex network structure of
traffic systems from the temporal and spatial dimensions
may also improve the prediction accuracy. Furthermore,
a large number of novel and powerful algorithms have
emerged with the flourishment of artificial intelligence,
such as enhanced probabilistic neural network (Ahmad-
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lou & Adeli, 2010), neural dynamic classification algo-
rithm (Rafiei & Adeli, 2017), dynamic ensemble learning
algorithm (Alam et al., 2020), and finite element machine
(Pereira et al., 2020). These emerging models may open a
new chapter in the field of traffic flow prediction.
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