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Abstract:

With the rapid development of intelligent operation and management in metro systems, accurate
network-scale passenger flow prediction has become an essential component in real-time metro
management. Although numerous novel methods have been applied in this field, critical barriers
still exist in integrating travel behaviors and comprehensive spatiotemporal dependencies into
prediction. This study constructs the metro system as a knowledge graph and proposes a split-
attention relational graph convolutional network (SARGCN) to address these challenges. Breaking
the limitations of physical metro networks, we develop a metro topological graph construction
method based on the historical origin-destination (OD) matrix to involve travel behaviors. Then, we
design a metro knowledge graph construction method to incorporate land-use features. To adapt
prior knowledge of metro systems, we subsequently propose the SARGCN model for network-scale
metro passenger flow prediction. This model integrates the relational graph convolutional network
(R-GCN), split-attention mechanism, and long short-term memory (LSTM) to explore the
spatiotemporal correlations and dependence between passenger inflow and outflow. According to
the model validation conducted on the metro systems in Shenzhen and Hangzhou, China, the
SARGCN model outperforms the advanced baselines. Furthermore, quantitative experiments also
reveal the effectiveness of its component and the constructed metro knowledge graph.

Keywords: passenger flow prediction, urban metro system, knowledge graph, graph neural network,
deep learning

1. Introduction

Among all modes of urban public transportation, the metro system has attracted attention from
transportation planners and managers due to its advantages of high speed, large capacity, and
punctuality. Although these advantages help the metro system attract more passengers, the
imbalance between travel demands and services has become increasingly severe. Many metro
stations, especially the critical nodes in the metro network, always face the intense challenge of
congestion. These issues negatively affect on the travel experience of passengers and reduce the
attractiveness of metro systems.

In recent years, since many compelling scenarios of the internet of things (IoT) have been applied
in metro operations, transportation administration can quickly obtain real-time states of the metro
system. Based on real-time information from advanced data collection and processing technologies,
numerous emerging applications have been conducted. To relieve pressure in metro operations, the
administration not only needs to grasp the current conditions but also to forecast their future
variations in advance. Therefore, accurate passenger flow prediction in metro systems has become
an essential task in recent years.

According to the prediction horizons, metro passenger flow prediction can be classified into three
major categories (Ma et al., 2019): long-term, medium-term, and short-term prediction. Long-term
and medium-term passenger flow predictions are vital in metro planning and development. For these
purposes, researchers mainly employ the four-step travel demand forecasting model (Agrawal et al.,
2018; McNally, 2007) and geographically weighted regression (GWR) (Daniel et al., 2012) to
predict future (e.g., monthly, annual, etc.) demand. Generally, the abovementioned two prediction
tasks focus on metro policy and planning, but they cannot meet the needs of real-time applications.
Since real-time information is beneficial to avoiding congestion and balancing transportation

resources (Zhang et al., 2020b), the importance of short-term passenger flow prediction is
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increasingly highlighted.

Previous studies on short-term passenger flow prediction can be further divided into station-level
and network-scale predictions. The former aims to forecast the future passenger flow of a specific
station. Since the temporal dependence of passenger flow is the basis of this task, the involved
prediction methods include statistical methods, machine learning methods, and recurrent neural
network (RNN) based deep learning methods. In the opposite, the latter focuses on predicting future
passenger flows of each station simultaneously. In addition to the temporal dependence, exploring
the spatial correlation is also essential to achieving accurate predictions. Therefore, several novel
deep learning models with powerful spatial correlation extraction capability, e.g., convolutional
neural network (CNN) and graph neural network (GNN), have widely attracted the attention of
researchers.

Since the abovementioned station-level prediction models rarely consider the spatial correlation
in the metro network, these models always suffer from limited prediction performance. Furthermore,
this category of prediction models needs to conduct training on each station separately, so the
training and storage costs approximately linearly increase with the metro network scale. Overall,
the station-level prediction methods are unsuitable for predicting future passenger flows of all the
stations in the metro network. Therefore, in recent years, researchers have preferred network-scale
prediction models. As there are typical topological structures in metro systems, GNNs are widely
applied in this field and have consistently achieved state-of-the-art performance.

Although numerous novel methods have been applied in this field, several critical issues are still
unaddressed:

(1) In GNN-based models, researchers must construct a reasonable graph in advance, which plays
a vital role in prediction performance. In numerous studies, the graphs are directly established
according to the physical adjacency relationship (i.e., the topology of the metro network) (Han et
al., 2019; Ye et al., 2020; Zhang et al., 2020b). However, these graph construction methods always
overlook metro travel behaviors. Thus, how to fuse travel behaviors and features into graph
construction principles still needs further exploration.

(2) Travel demands and behaviors are significantly associated with land-use characteristics (Jun
et al., 2015), but only a few studies (He et al., 2020; Lin et al., 2020) consider this vital factor in
metro passenger flow prediction. These studies attempt to address metro passenger flow prediction
using statistical methods or shallow machine learning methods, so there is a lack of exploration of
the spatiotemporal dependencies in network-scale passenger flow. GNNs are always regarded as
powerful tools in this field (Han et al., 2019; Liu et al., 2020; Ye et al., 2020; Zhang et al., 2020b),
but land-use features are rarely introduced into GNNs for metro passenger flow prediction. Thus,
effectively integrating the land-use features and GNN model to improve prediction accuracy is still
a challenge.

(3) Spatiotemporal correlations of passenger flow at different stations need further mining to
improve prediction performance. There are two passenger flows at each metro station: inflow (i.e.,
the number of passengers in the origin station) and outflow (i.e., the number of passengers in the
destination station). Since the outflow of each station consists of the inflow of the remaining stations
in the metro network, the inflow and outflow are correlated in the spatial and temporal dimensions.
However, few current studies explore this relationship in passenger flow prediction. Additionally,
passenger flows in different regions also follow specific travel patterns. For instance, commuting
will cause the metro passenger flow around industrial and residential regions to show the opposite
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trend. These spatiotemporal regularities are also vital for metro passenger flow analysis and
prediction.

To fill these gaps, we propose a deep learning framework for short-term metro passenger flow
prediction, named split-attention relational graph convolutional network (SARGCN). To adapt
metro travel behaviors and operation principles, we extract the historical OD matrix from the smart
card data as the similarity measure and employ the complex network construction method
(Cupertino et al., 2013) to establish a topological graph. Since land-use features significantly impact
metro travel demands and behaviors, we introduce the point of interest (POI) data to transform the
constructed topological graph into a metro knowledge graph. Then, a spatiotemporal learning
framework, i.e., the SARGCN, is proposed for network-scale metro passenger flow learning and
prediction based on the established knowledge graph. In summary, the major contributions of this
study are concluded as follows:

(1) We develop a metro topological graph construction method based on the historical OD matrix
and complex network construction algorithm. Compared with the physical metro network, this data-
driven graph construction method is adaptive to metro travel patterns, so the spatial correlation on
the graph is enhanced.

(2) Based on the land-use features around metro stations, a metro knowledge graph construction
method is designed and applied to the constructed metro topological graph. In this way, each station
is assigned a specific semantic type to provide essential prior knowledge for the deep learning
model.

(3) We propose the SARGCN model for network-scale metro passenger flow prediction. In this
model, the R-GCN, split-attention mechanism, and LSTM are effectively incorporated to learn the
spatiotemporal correlations and dependencies between inflow and outflow on the constructed metro
knowledge graph.

(4) Validated on the metro systems in Shenzhen and Hangzhou, China, the proposed SARGCN
model expresses a superior performance than the advanced baselines in terms of accuracy and
efficiency. Additionally, the ablation experiment results also demonstrate the effectiveness of each
component.

The organization of this paper is summarized as follows. Section 2 discusses the existing studies
in the field of short-term metro passenger flow prediction. We briefly describe the metro passenger
flow and land-use data involved in this study in Section 3. Section 4 introduces the detailed
methodology of the proposed metro knowledge construction method and SARGCN model. Section
5 shows the experimental results and discussions. Finally, we conclude this study and summarize
the research directions for future works in Section 6.

2. Literature review

2.1 Station-level prediction methods

Due to the limitation of computing capability, statistical methods won the favor of researchers in
the early stage of metro passenger flow prediction. Statistical methods always regard the previous
ridership of each station as sequence data and employ time-series analysis models to make
predictions. Among all the time-series analysis models, the autoregressive integrated moving
average (ARIMA) model (Chen et al., 2020; Wen et al., 2022) and its variants are the most famous
methods in metro passenger flow prediction. Meanwhile, other statistical methods, such as the
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Kalman filter (Sun et al., 2014) and generalized autoregressive conditional heteroskedasticity
(GRACH) (Ding et al., 2018), are also widely applied in this task. However, these statistical methods
always encounter limitations in exploring the nonlinear characteristics of traffic data (Zhao et al.,
2020a) and have high computational complexity (Zhang et al., 2019). Additionally, these methods
may encounter challenges when facing complex conditions and big data (Zhou et al., 2020).

To fill these gaps, numerous machine learning models have been developed for metro passenger
flow prediction, including artificial neural network (ANN) (Li et al., 2019; Li et al., 2017b; Wei &
Chen, 2012; Zhao et al., 2011), support vector machine (SVM) (Sun et al., 2015; Tang et al., 2019a),
decision trees (Ding et al., 2016; Zhao et al., 2020b), and Bayesian networks (Lin et al., 2017; Roos
et al.,, 2017). Although these machine learning methods can usually achieve higher prediction
accuracies than traditional statistical methods, their prediction performances are still unsatisfactory
for real-time applications of metro systems. Meanwhile, machine learning methods always face
significant challenges to capturing the temporal dynamics in passenger flow. Facing a dramatic
increasement in the scale of metro data and metro management demands, researchers widely apply
deep learning methods in this field and have demonstrated their superiority to traditional methods.
Since metro passenger flow is highly temporally dependent, recurrent neural network (RNN) and
its famous variants, i.e., long short-term memory (LSTM) (Tang et al., 2019b) and gated recurrent
unit (GRU) (Zhang & Kabuka, 2018) are widely employed to mine its time-varying dynamics.
Meanwhile, to improve prediction performance under anomalous large passenger flow, (Zheng et
al., 2020) employed the complex network theory to collective behavior modeling, and then a hybrid
model was subsequently proposed to capture the time-varying characteristics of passenger flow.

2.2 Network-scale prediction methods

To solve the limitation of traditional station-level prediction methods, many researchers have paid
attention to network-scale passenger flow prediction models. Hao et al. (2019) proposed a sequence
to sequence (Seq2Seq) model based on LSTM and the attention mechanism for network-scale
passenger prediction. Additionally, this model further introduced external features (e.g., weather,
special events, etc.) into the prediction framework. Ma et al. (2019) transformed metro ridership
into grid-based data and then combined CNN with bidirectional LSTM to construct a parallel
architecture for prediction. Ning et al. (2018) designed a residual unit and introduced external factors
into metro passenger flow prediction. However, since metro stations are sparsely distributed in the
urban areas, Liu et al. (2019) demonstrated that metro networks are unsuitable for transforming into
grid-based data. Hence, they manually designed high-level features to represent the spatial
correlation to achieve accurate prediction.

To further promote passenger flow prediction accuracy, researchers also turned to GNN-based
methods to involve topological information in prediction models. Zhang et al. (2020b) integrated
the ResNet (He et al., 2016), GCN (Kipf & Welling, 2016), and attention-based LSTM to construct
the ResLSTM model for metro passenger flow prediction. Ye et al. (2020) proposed a Multi-
STGCnet model, which employed the LSTM and GCN to extract the temporal and spatial
dependencies of metro passenger flow, respectively. Relying on the physical metro network, Wang
et al. (2021) constructed metro hypergraphs to involve OD passenger flow and proposed a dynamic
spatiotemporal hypergraph neural network (DSTHGCN) for prediction. Ou et al. (2020) integrated
diffusion graph convolutional networks with a novel temporal convolutional model (i.e., TrellisNet

(Bai et al., 2019b)) to explore the spatiotemporal dependencies of metro passenger flow.
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Actually, there is a typical tunnel effect from the perspective of metro operation regularities and
passenger travel behaviors. That is, passengers are more inclined to take the metro on long-distance
travel instead of going to the nearby stations. Therefore, it is challenging for physical metro
networks to capture this travel behavior. Liu et al. (2020) proposed a physical-virtual collaboration
graph network (PVCGN) model, which integrates a physical graph, a similarity graph, and a
correlation graph for metro ridership and online OD ridership prediction. However, the similarity
graph and correlation graph are based on the k-nearest neighbors (i.e., connecting each node to its
k most similar nodes) and the é&-radius principles (i.e., connecting each node to nodes within
distance threshold ¢). Thus, the constructed network only focuses on the similarity at the node level
while ignoring the optimality at the network level. Meanwhile, land-use features are also a typical
factor to represent the travel behavior of metro passenger flow, but they are rarely considered in
network-scale passenger flow prediction. Overall, a brief summary of this study and current novel
models in this field is displayed in Table 1.

Table 1 Comparison of network-scale prediction models in metro passenger prediction

Correlation of

Land-use features Travel behavior .
in & out flow
ResLSTM X X V
DSTHGCN X \/ X
PVCGN X J V
SARGCN V V V

3. Data description

3.1 Metro data

This study applies the smart card data collected in Shenzhen and Hangzhou, China, to validate
the proposed model. The smart card records include smart card ID, collection machine ID, state (i.e.,
enter or exit), collection time, metro line, and metro station. Passenger travel features, such as the
travel time matrix and OD matrix, can be extracted from this data source. We count the number of
passengers entering and leaving each station from the original smart card records, named inflow and
outflow. Furthermore, we also extract the historical OD matrix from the smart card records to
measure the spatial dependence between different metro stations.

The detailed descriptions of these two datasets are introduced as follows:

(1) Shenzhen city. The Shenzhen metro network includes 166 metro stations, and the collection
duration of smart card records ranges from May 1% to May 315 in 2019. According to the actual
operation time of the metro system, only the records between 6:00 am and 11:00 pm are used in this
study. For this dataset, we aggregate the inflow and outflow of each station every 10 minutes. Thus,
the inflow and outflow of each station can be regarded as a time-series with 102 records per day.

(2) Hangzhou city. This dataset is released by (Liu et al., 2020) via an accessible link'. In this
dataset, there are 80 metro stations in total. All the data is collected in January 2019, and the time

interval of passenger flow is set as 15 minutes.

Thttps://github.com/HCPLab-SYSU/PVCGN
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3.2 Land-use data

Lin et al. (2020) demonstrated that land-use features vitally affected metro passenger flows. POI
data refer to specific points with different functional attributions in urban areas and are widely used
in travel pattern analysis (Krause & Zhang, 2019). Therefore, we utilize the POI data to reflect the
land-use characteristics around each metro station for passenger flow analysis and prediction. The
POI data involved in this study are collected by the application programming interface (API) of
Baidu Map?. The original POI data have 19 categories and 140 subcategories. We merge similar
categories according to the definition of land-use attributes and finally obtain five categories. The
detailed descriptions of these five merged categories are displayed in Table 2.

Table 2 Classification and description of POI data

Category Contents

residential area residential area, dormitory, etc.

leisure and entertainment restaurants, cinema, shopping center, etc.

education institution colleges, high schools, kindergartens, etc.

corporate company company, factory, etc.

transportation hub airports, railway stations, bus stations, etc.
4. Methodology

4.1 Problem formulation

Assume It € RN*M and O € RN*M denote the feature matrices of inflow and outflow at time
interval t, respectively, where N represents the number of stations and M denotes the number of
previous time steps. The metro passenger flow prediction task in this study can be summarized as
follows: given the previous passenger flow (I and O¢) and a knowledge graph (G), aim to learn a
mapping function F(-) to predict inflow (i¢ +, € RY) and outflow (0; + , € RY) at the p-th step
afterward at each station.

(It + p0c+p) = F(I:,0 G) (1)

4.2 Metro knowledge graph construction

4.2.1 Metro topological graph construction

The tunnel effect mentioned above is an unignored characteristic in metro travel behavior.
According to the smart card data used in this study, the travel distance distribution in the Shenzhen
metro system is displayed in Figure 1. Here, we employ the Floyd-Warshall algorithm and metro
topological network to calculate the distance among metro stations. From this figure, an intuitive
finding is that the majority of passengers select the metro as middle-distance and long-distance
transportation, and few passengers take adjacent stations as their destinations. Specifically, the
average travel distance is 7.60 stations, and only 6% of passengers stop at adjacent stations. This
finding indicates that the passenger flow interactions between the adjacent metro stations are not

2https://Ibsyun.baidu.com/index.php?title=webapi/guide/webservice-placeapi
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Figure 1 Travel distance distribution in the Shenzhen metro network
Furthermore, we illustrate the spatial distributions of the correlated stations for Laojie Station in
Figure 2. Laojie Station is an important node in the Shenzhen metro network, which is the transfer
station for Lines 1 and 3. Here, these four figures explore the positional relationship between Laojie
Station and its correlated stations from the traffic perspective (i.e., origin and destination stations)
and statistical perspective (i.e., Pearson correlation coefficient). Similarly, we can find that all the
correlated stations are far apart from Laojie Station, instead of the neighbor stations.

| @ Laojie station Eoy @ Laojie station
275F  f . . . 275F f . -
/ top 5 origin stations - o/ top 5 stations of inflow
270 7 o  top 5 destination stations ../ ] 270 7 O  top 5 stations of outflow _.‘"
3] X / o b )
'g 2265 F 4 ¢ s 'g 2265 F 4 /
5 2260 | 5 2260 F
255 2255 F
22.50 F 2250
113.8 1139 1140 1141 1142 1143 113.8 113.9 1140 1141 1142 1143
Longitude Longitude
(a) top 5 origin and destination stations (b) top 5 correlated stations

Figure 2 Spatial distributions of correlated stations with Laojie Station

Following these findings, since the topological network overlooks these travel patterns, it is
unsuitable for passenger flow prediction. Thus, it is essential to construct a reasonable graph that is
adaptive to the travel behaviors of the metro system. This study employs the OD relationship among
all the stations as the similarity measure for graph construction. Then, the complex network
construction algorithm proposed by (Cupertino et al., 2013) is applied to build a directed graph.
Unlike the simple k-nearest neighbors and the &-radius approaches (Liu et al., 2020), this data-
driven construction method can connect correlated stations at the node level and consider optimality
at the network level. Cupertino et al. (2013) utilized a distance measure for graph construction, so
this method aimed to connect nodes with short distances. However, in this study, since we employ
the OD relationship as a similar measure, we prefer the OD passenger flow on the edges in the

constructed graph to be as large as possible. Thus, we replace the min (-) and max(-)
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operations in this method with the corresponding max (-) and min (-) operations, respectively.
Finally, we summarize this metro graph construction algorithm in Algorithm 1.

Algorithm 1. Metro topological graph construction method.

Input: number of nodes, N; similarity matrix, Wop € RN XV,
hyperparameters, K and 4; node set V = {v,v5,..,Un}.

Output: adjacency matrix, Wy € RN*N,

Process:

1.W <zeros(N,N)

2.0 {w1,0y,...05} (w; = {v})

3.Wo<=Wqp

4.while len(Q) > 1 do

5. [@p0,]<—argmax(Wg)

6. d.2A-min(d,d,)

7. [vsve]<select(w,,w,, K)

8. fori=l, ..., K do

9 if W[vk, vk >d, do

10. W [vf, v 1
11. end
12. end

13. w,<concat(w,,®,) and delete w,
14. update Wq among the current groups
15.end

16.Wy[i,i]]<1, Vi€ [1,N]

In this algorithm, the select(-) operation in Step 7 aims to select the most similar K node
pairs from ®,, and w,. Meanwhile, d,;, and d, represent the average similarity within node
groups W, and ,, respectively. In Step 13, concat( - ) denotes the concatenation operation,
which aims to join node groups w;, and w,, into a larger group. In Step 14, Wy[i, j] is updated
by the similarity of the most similar node pair between node groups ®; and ;. Furthermore, since
the previous passenger flow of each station significantly affects its own future states, we apply a

self-loop connection (i.e., Step 16) to each node to retain its previous influence.

4.2.2 Knowledge graph construction

According to the definition in (Hogan et al., 2020), a knowledge graph is a network that consists
of entities with semantic types and relations between these entities. Since knowledge graphs can
truthfully and powerfully reflect the dependencies between entities in the real world, it has been
widely used in search engines, social networks, question answering, etc. In this study, we employ
the POI data around metro stations to represent their semantic types to obtain the metro knowledge
graph.

Determining the semantic types of nodes and relationships between them is the key step in
knowledge graph construction. In the previous study (Tang et al., 2020), POI data are generally
classified into several categories and employed to assign a label to each station, according to the
POI category with the maximum number around it. This method depends on the number of POI
categories around each metro station, but overlooks the differences in the total number of each
category. If there is a significant gap in the number of each category, it would be unfair to determine

9
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the station type only based on the quantity. To obtain a more reasonable classification, we utilize
the distribution frequency of each category to determine the station type, which is summarized in
Equations 2 and 3. In these equations, ¢/ and p/ denote the number and distribution frequency of
POI category j around station i, respectively. R; represents the determined semantic type of
station i. In Equation 3, the type of each station is assigned as the POI category with the highest
distribution frequency.

cl

pl=—y— 2
Sk ©

:Ri = argmax p}l (3)
J

Using the directed graph G constructed above, we can establish a metro knowledge graph by
assigning the semantic types to corresponding stations. Therefore, the established knowledge graph
can be denoted as G = (V,ER). Here, V, &, and R represent the node set, edge set, and node
types, respectively.

4.3 Framework of the SARGCN

I feature split.
SR TN T e \
‘ ‘( inflow | I[ outflow! |
} | [long-scale| ...... short-scale } | |long-scale| ...... [short-scale H
\ |

] N [
|| | R-GCN | ..... I R-GCN ‘ [ | ‘ R-GCN | - | R-GCN | I
Wiyl & o p—— ey P — —_ |

1==5 E | F=-1
\ : \
\ LSTM aggregator |
| I |
: | split-attention mechanism | SARGCN block }

| SARGCN block

future passenger flow

Figure 3 The framework of the proposed SARGCN model
Figure 3 illustrates the framework of the proposed prediction method. Based on the constructed
knowledge graph, we integrate the R-GCN, LSTM, and split-attention mechanism to construct the
SARGCN block. In each block, the R-GCN layer is applied to extract the spatial correlation on the
established knowledge graph. Meanwhile, we employ the split-attention mechanism and LSTM to

10
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capture the temporal dynamics of passenger flow and explore the dependence between inflow and
outflow. The split-attention mechanism allows the input features to be divided into several groups.
Then, the unique characteristics of each group are extracted and aggregated to incorporate global
contextual information. After that, several SARGCN blocks are stacked together to improve the
capability of hidden feature extraction.

4.4 Spatial correlation modeling

R-GCN (Schlichtkrull et al., 2018) is an effective variant of GCN, and it develops a powerful
capability to learn realistic knowledge bases. Thus, we adopt it to model the spatial dependence on
the constructed metro knowledge graph. Supposing the input feature of R-GCN is H = {hy, h,, ...,
hy}, where h; denotes feature of node i, the calculation details of R-GCN are summarized in

Equation 4 and Figure 4.

h/ = J(Z 2 C%th,- + Woh,) 4)

rERjeN{

graph with node label .{ﬁi 1@'1.
. — O0— — graph.
./" \. convolution
.\ /'. .&de‘label 2
.—» ’ 4>. e —® — g;raph. + — Output
; ./ convolution e
./ \ self-loop
Figure 4 The calculation framework of R-GCN
Here, R stands for the number of node types which is set as 5 according to Table 1, and NJ

denotes the neighbors of node i with type 7. ¢; is a problem-specific normalization constant. To
highlight the importance of each node itself compared with its neighbors, Wy is employed to
represent the particular connection type of the self-loops.

Moreover, a regularization, named basis decomposition, is applied in Equation 4 to reduce the
parameters by weight sharing. The regularization of W; is a linear combination and described in
Equation 5, where Vjp and a,, represent the learnable basis transformations and coefficients,

respectively.
B

W, = bzlarbvb (5)

4.5 Temporal dependence modeling

In addition to the spatial correlation mentioned above, the metro passenger flow data still have
two dependencies: (i) temporal dynamics; (ii) the dependence between inflow and outflow. Both of
these dependencies are critical factors in improving prediction accuracy. Motivated by the
breakthrough of the ResNeSt model (Zhang et al., 2020a) in computer vision, we integrate its core

component, i.e., the split-attention mechanism, with R-GCN and LSTM model to model these two
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vital dependencies. Specifically, the original split-attention mechanism employs the group
convolution operation (Krizhevsky et al., 2017; Xie et al., 2017) to extract the feature-map attention
and utilizes a weighted combination operation to mine global contextual information. Following
this opinion, using the split operation, we design a graph-based group convolution operation on the
previous passenger flow. Furthermore, since evident temporal dependence exists in passenger flow
data, we employ LSTM to address this time-series characteristic.

4.5.1 Feature split operation

Considering the dependence between inflow and outflow, we divide the previous passenger flow
into S split groups (e.g., inflow and outflow). In traffic prediction, researchers have demonstrated
that traffic data at different time steps show different influences on future states (Yang et al., 2019).
Therefore, in this study, we further classify each split group into C cardinal groups (e.g., long-
scale, middle-scale, and short-scale) according to the temporal dimension. Supposing the temporal
dimension of I; and O is 6, the developed feature split operation under S =2 and C =3 is
illustrated in Figure 5. Since each subgroup uniquely affects future passenger flow, using different

models to capture the characteristics of each subgroup will help achieve accurate prediction results.

|
|
|
| -
|
|

Figure 5 An example of the feature split operation under S =2, C =3

4.5.2 Group graph convolution operation

The group convolution plays a vital role in the split-attention mechanism. The principle of this
operation can be summarized as: output features can only receive information from input features
in the same group. Hence, we adopt this opinion and propose a group convolution operation. The
calculation process of the involved group R-GCN operation is summarized in Equations 6 and 7,
where h! denotes the input features of node i in group [, and h! represents the corresponding
output features. Meanwhile, the difference between the graph convolution operation and group
graph convolution is displayed in Figure 6.

, 1
h! = G(Z Z warh} + Woh) 6)
rERjeN] i
h; = concat(h!, h?..., h}) (7)
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(a) graph convolution operation (b) group graph convolution operation
Figure 6 The structure of graph convolution operation and group graph convolution operation

4.5.3 LSTM layer

As shown in Figure 5, we group the input features according to the temporal dimension. Thus,
temporal dependence exists among these groups. Many studies have demonstrated the strong ability
of LSTM to handle time-series data (Ma et al., 2015), so we employ it to model the temporal
dynamics among the output features of R-GCNs. The core composition of the LSTM unit includes
an input gate i, a forget gate f, an output gate 0, and a memory cell c¢;. Assuming X; denotes

the input vector, the calculation process of the LSTM unit is described below.

i;=0(xWy + h;_ Wy + b)) (8)
ft=0xWys+ he Wy + by) 9)
0; = 0(X:Wxo + h¢ — 1Who + bo) (10)

¢; = tanh (x;Wyc + h; _ 1Wpc + bc) a1
a=fOc_1+i,O¢ (12)
h; = o, © tanh(c,) (13)

Here, W and b represent the weight matrices and bias, respectively. In addition, © is the

elementwise product operation, and o(-) represents the sigmoid activation function.

4.5.4 SARGCN block

Figure 3 indicates that the proposed SARGCN model consists of several stacked SARGCN
blocks. Relying on the description of R-GCN, feature split operation, and LSTM, we introduce the
SARGCN block in detail in this subsection (shown in Figure 7). Compared with the naive split-
attention mechanism in ResNeSt, we replace the convolution operation with R-GCN and utilize
LSTM to explore the temporal dynamics among groups.

As described in Section 4.1, Ir and O¢ denote the input features of the SARGCN model. Taking
the first SARGCN block as an example, its output features V can be computed by the following
equations. Here, Equation 14 denotes the feature split process, and Equation 15 represents the R-
GCN operation. Equations 17-21 present the split-attention mechanism applied to the output
features of R-GCNss. Finally, a residual structure (described in Equation 22) is employed to enhance
the stability and improve the convergence speed in the training process.

In Equation 19, &°(-) represents two stacked dense layers with ReLU as the activation function.

And Wr shown in Equation 22 is a learnable weight matrix that aims to transfer the dimension of
13



1  input features F to be equal to that of V.
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R-GCN - ~
e |
X

Residual connection

Figure 7 The detailed description of the SARGCN block

2 According to Equations 14-22, the proposed SARGCN block has a solid capability to explore the
3 spatiotemporal dependencies by integrating R-GCN, split-attention mechanism, and LSTM.
4 Specifically, R-GCN can capture the spatial correlation on the established knowledge graph and
5  explore the interactions between stations with different semantic types. The split-attention
6  mechanism can assign traffic significance to the deep learning model and effectively mine the
7  temporal dynamics and dependencies between inflow and outflow. Moreover, since passenger flow
8  data have typical time-series characteristics, LSTM is employed to enhance the capability of
9  SARGCN to handle this temporal correlation.

F = split(1;,0¢) = {F1,...F§;...F§,... F§} (14)

U$ = RGCN§(Fs) (15)

U = LSTM(U) = {01,...05;..,0%,... 05 (16)

c
U,= ) U5 (17)
c=1
. 1N
S; = average_pooling(Uy) = NnZ::1US(n) (18)
o exp(E(sy)
as = ¢ . (19)
PIC L GIER))
c

Vo= 2, (@09 (20)

V = concat(V4,Vy,...,.Vs) (21)

V=WV + WiF (22)
10 The proposed SARGCN model is a modular design by stacking SARGCN blocks. This modular

11  design idea makes the network structure relatively compact and convenient for building complex
12 and deep models. In this way, the model structure can be modified easily by changing the number
13 of groups (including split groups and cardinal groups) and the output dimension of R-GCN.
14  Compared with the naive R-GCN model, the split-attention mechanism can also help SARGCN

15  reduce model parameters and construct lightweight models.

16 5. Experiment
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5.1 Evaluation metrics

In this study, three metrics are employed to evaluate prediction performance, including the root
mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error
(MAPE). The definitions of these three metrics are introduced in the following equations. Here, N
denotes the number of metro stations, and n presents the number of testing samples. Meanwhile,
y can represent both the ground-truth inflow and outflow, and y denotes the corresponding
predicted values.

RMSE = NZZ - (23)

i=1j=1
N n
MAE=iZZ| L— (24)
i=1j=1
MAPE = 22 | | x 100% 25)
l—l =1

However, many studies have demonstrated that MAPE always faces significant challenges when
encountering zero or close-to-zeros ground truth (Kim & Kim, 2016). When the metro system begins
to operate in the early morning, no passengers exit at many stations, thus leading to zero data in
outflows. Therefore, we employ MAPE@10 (Zhang et al., 2019) to address this problem.
Specifically, we calculate MAPE on metro stations with the top 10% largest passenger flow.

.’ ‘ 5 : -
o e
AN
X > S - r .
L e
residential area * corporate company
¢ leisure and entertainment © transportation hub residential area * corporate company
e education institution leisure and entertainment © transportation hub
* education institution
(a) Shenzhen city (b) Hangzhou city

Figure 8 The spatial distribution of metro stations with different semantic types
5.2 Experimental setting

5.2.1 Network construction method

By using the construction method described in Section 4.2, we can transfer the employed
Shenzhen and Hangzhou metro systems into knowledge graphs, which are shown in Figure 8.
According to Algorithm 1, the network construction method has two critical parameters, named K
and A, which significantly impact network density. In this study, we set the value of 4 as 0.1 and
assign the value of K to these two datasets as 7 and 13, respectively. Finally, the Shenzhen dataset
contains 166 nodes and 832 edges (including 166 self-loop edges). And in the Hangzhou dataset,

15
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we obtain 80 nodes and 715 edges (including 80 self-loop edges).

5.2.2 SARGCN model

The implementation details of the proposed SARGCN model on the Shenzhen and Hangzhou
metro systems are described as follows.

(1) Shenzhen metro system. As mentioned in Section 3.1, we aggregate both inflow and outflow
into 10 minutes and finally obtain 3,162 records for each station. These passenger flow records are
divided into a training set, a validation set, and a testing set according to a splitting rate of 70%:
10%: 20%. We employ the previous 12 time-steps inflow and outflow to predict network-scale
ridership at the next 1-step, 4-step, 7-step, and 10-step, respectively. Two stacked SARGCN blocks
are utilized to compose the SARGCN model. The hidden dimension of the proposed SARGCN
model is set to be the same as the number of stations, i.e., N = 166. Considering the actual traffic
significance, we set the number of groups in SARGCN as S =2 and C = 3. That is, we first divide
passenger flow into two split groups (i.e., inflow and outflow), and each split group is further divided
into three cardinal groups (i.e., short-scale flow, middle-scale flow, and long-scale flow).
Meanwhile, we apply a grid search strategy on {16,32,48,64,96} to search for the optimal values of
the hidden dimension of €. Finally, the prediction accuracy reaches the peak at 48, so we employ it
as the optimal hyperparameter.

(2) Hangzhou metro system. Since this dataset is obtained from the open-source data (Liu et al.,
2020), we follow all the settings of the original dataset. That is, we utilize the inflow and outflow
of the previous 4 intervals to simultaneously predict the next 4 steps. Furthermore, a two-layer
SARGCN model is employed to conduct passenger flow prediction in the Hangzhou metro network,
and the hidden dimension is set as 224. After the grid search strategy, the hidden unit number of &
is set as 96. Since the horizontal of historical passenger flows is 4, we set the number of groups as
S=2 and C=2.

Before inputting to the deep learning model, we first normalize these two datasets. The batch size
of the mini-batch training strategy is set to 40 for Shenzhen and 32 (the same as in (Liu et al., 2020))
for Hangzhou, and the Adam optimizer (Kingma & Ba, 2014) with a learning rate of 0.001 is applied
for model training. All the parameters are initialized by Xavier initialization (Glorot & Bengio,
2010). The number of training epochs is set to 300, and an early-stop strategy is adopted on the

validation set to avoid overfitting.
5.3 Performance comparison

5.3.1 Shenzhen metro system

This subsection first introduces and employs 11 widely-used traffic state prediction models to be
compared with the proposed SARGCN model on the Shenzhen metro system, including traditional
statistical models, machine learning models, shallow deep learning models, and novel graph neural
networks. The brief descriptions of the selected baselines are summarized below.

(1) HA. The historical average (HA) method utilizes the average passenger flows of each period
to represent its future values. For instance, the future passenger flow at 7:00 am-7:10 am on the
testing set is calculated by the average passenger flows during 7:00 am-7:10 am on the training set.
We utilize the prediction performance of 1-step to denote that of multistep.

(2) MLP. The multilayer perceptron (MLP) is a basic machine learning model, and neither
16
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temporal correlation nor spatial dependence is involved in this method. For each metro station, we
employ a 3-layer MLP, including an input layer, a hidden layer with ReLU as the activation function,
and an output layer to predict short-term passenger flow.

(3) LSTM (Ma et al., 2015). Long short-term memory (LSTM) can effectively capture the
temporal dynamics of metro passenger flow, but the spatial dependence is also overlooked.

(4) GRU. Gated recurrent unit (GRU) is a variant of LSTM. Similarly, only the temporal
correlation is used in this model.

(5) GCN. Considering the prediction performance, instead of the original GCN framework
proposed in (Kipf & Welling, 2016), we employ the R-GCN model without node types and edge
relationships (i.e., without a knowledge graph) as GCN to forecast short-term passenger flows.

(6) GAT (Velickovi¢ et al., 2017). The graph attention network (GAT) can explore spatial
dependence by the self-attention and multi-head attention mechanisms, and it has advantages in
directed graphs and inductive learning tasks. However, only spatial dependence is involved in the
naive GAT model.

(7) STGCN (Yu et al., 2018). In this model, the gated CNN is employed to capture the temporal
dynamics and combined with GCN to formulate the spatiotemporal graph convolutional network
(STGCN).

(8) Graph-WaveNet (Wu et al., 2019). In Graph-WaveNet, a novel adaptive correlation matrix
and stacked temporal convolutional layers are employed to handle spatial dependence and temporal
dynamics, respectively.

(9) T-GCN (Zhao et al., 2020a). This method utilizes GRU to capture the time-varying
characteristics of traffic data and applies GCN to explore the spatial correlation.

(10) TGC-LSTM (Caui et al., 2020). In this method, a traffic graph convolution operation based
on GCN is proposed and stacked with LSTM.

(11) PVCGN (Liu et al., 2020). This model constructs three topological graphs (including a
physical graph, a similarity graph, and a correlation graph) to explore the comprehensive spatial
correlations in the metro system. Then, a physical-virtual collaboration graph network (PVCGN) is
proposed to predict network-scale passenger flow.

All the experiments are conducted on a Windows 10 workstation (CPU: Intel Core (TM) 19-
9900K @ 3.6GHz, RAM: 32GB random-access memory, GPU: NVIDIA GTX 2080Ti with 11GB
memory) with Python 3.6.10. We implement the proposed SARGCN model with an open-source
graph learning framework, i.e., deep graph library (DGL) (Wang et al., 2019), and utilize MXNet
(Chen et al., 2015) as the backend.

Table 3 to Table 5 show the quantitative comparisons between SARGCN and baselines in the
Shenzhen metro system. The prediction performances shown in Table 3 consist of the whole
ridership, so we also separate the prediction metrics of inflow and outflow into Table 4 and Table
5, respectively. Here, the performances shown in Table 4 and Table 5 correspond to the metrics in
Table 3. Furthermore, we illustrate the ground-truth passenger flow and the predicted values of three
typical stations in Figure 9.



Table 3 Quantitative comparison of the whole ridership in Shenzhen metro system

1-step 4-step 7-step 10-step
RMSE MAE MAPE@10 RMSE MAE MAPE@10 RMSE MAE MAPE@10 RMSE MAE MAPE@10
HA 47.32 22.62 30.07% 47.32 22.62 30.07% 47.32 22.62 30.07% 47.32 22.62 30.07%
MLP 23.52 14.03 16.70% 34.20 19.30 25.74% 47.48 25.19 33.41% 59.87 30.61 38.78%
LSTM 23.73 13.82 18.11% 31.22 17.16 25.98% 40.80 20.78 35.07% 48.47 23.76 36.73%
GRU 23.93 14.07 19.24% 33.84 18.19 32.37% 45.45 22.46 47.16% 50.09 24.98 39.98%
GCN 23.35 13.80 15.57% 30.49 17.63 18.10% 42.63 24.36 26.37% 50.22 26.99 25.66%
GAT 20.24 12.41 21.38% 26.27 15.52 26.51% 33.03 18.85 31.62% 39.81 21.99 36.44%
STGCN 25.25 14.21 15.29% 34.98 18.80 19.51% 50.73 24.97 28.68% 67.79 32.07 41.65%
Graph-WaveNet 20.63 12.11 14.16% 24.47 13.29 15.42% 30.46 14.64 17.13% 32.09 15.49 18.84%
T-GCN 23.41 14.09 16.05% 28.11 16.32 19.40% 30.28 17.24 20.10% 32.18 18.75 23.16%
TGC-LSTM 22.59 14.22 18.56% 24.55 15.00 19.47% 28.33 16.32 23.08% 29.86 16.39 20.80%
PVCGN 22.63 12.76 14.27% 23.77 13.39 15.37% 24.46 13.64 16.39% 25.36 13.99 17.39%
SARGCN 18.14 11.24 13.49% 20.85 12.52 15.10% 23.35 13.34 15.46% 24.51 14.22 17.34%
Table 4 Quantitative comparison of inflow in Shenzhen metro system
1-step 4-step 7-step 10-step
RMSE MAE MAPE@10 RMSE MAE MAPE@10 RMSE MAE MAPE@10 RMSE MAE MAPE@10
HA 46.32 22.77 29.86% 46.32 22.77 29.86% 46.32 22.77 29.86% 46.32 22.77 29.86%
MLP 21.50 13.17 16.65% 34.47 19.56 28.54% 48.26 25.74 35.12% 60.17 30.99 39.72%
LSTM 21.36 12.82 18.73% 30.59 16.75 28.43% 40.77 20.61 33.83% 48.64 23.65 35.04%
GRU 21.48 13.01 19.77% 32.85 17.69 33.48% 4451 22.10 43.77% 49.71 24.72 36.68%
GCN 21.37 12.79 15.05% 31.25 17.52 18.82% 44.37 24.69 27.73% 52.74 27.52 27.18%
GAT 18.55 11.49 14.03% 26.47 15.22 18.06% 34.77 19.28 20.65% 41.90 22.47 23.55%
STGCN 21.39 12.90 14.74% 33.35 17.64 19.01% 49.62 24.06 30.32% 69.17 31.94 45.74%
Graph-WaveNet 18.65 10.98 13.60% 22.99 12.48 14.90% 27.70 13.87 17.16% 28.76 14.77 19.36%
T-GCN 19.97 12.63 16.05% 26.70 15.58 19.40% 27.52 15.92 20.10% 31.44 18.29 23.16%
TGC-LSTM 21.52 13.79 18.98% 2424 14.57 20.62% 28.71 15.91 23.94% 29.64 15.79 21.31%
PVCGN 20.99 11.74 13.75% 23.72 12.86 15.31% 24.82 13.21 16.39% 26.02 13.60 17.14%
SARGCN 16.46 10.40 13.27% 20.58 12.17 15.98% 23.49 12.79 15.15% 24.35 13.84 17.33%
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These tables show that in terms of prediction accuracy on both the 1-step and multistep, SARGCN
always expresses superior performances to the baselines. For instance, compared with the most
accurate baseline in Table 3, SARGCN improves the RMSE by 10.38%, 12.28%, 4.54%, and 3.35%
on these four steps, respectively. These results demonstrate that the proposed SARGCN model has
a powerful capability to explore the spatiotemporal dependencies on the metro system. A
comparison of the prediction results and ground truth (shown in Figure 9) shows that the time-
varying patterns of passenger flow vary from station to station. And the proposed SARGCN model
is effective in capturing these temporal dynamics in different time-varying patterns. Furthermore,
compared with the baselines without spatial correlations (i.e., HA, MLP, LSTM, and GRU), almost
all the GNN-based models perform higher accuracies in the 1-step prediction task and stabilities in
multistep prediction tasks. This phenomenon further proves the importance of spatial correlations

in metro passenger flow prediction. In summary, these comparisons can indicate the superior

18
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Table 5 Quantitative comparison of outflow in Shenzhen metro system

1-step 4-step 7-step 10-step
RMSE MAE  MAPE@I0 RMSE MAE MAPE@I0 RMSE MAE MAPE@I0 RMSE MAE MAPE@I0
HA 4830 2248 30.29% 48.30 22.48 30.29% 48.30 22.48 30.29% 48.30 22.48 30.29%
MLP 25.35 14.88 16.75% 33.92 19.05 22.88% 46.69 24.64 31.66% 59.56 30.23 37.82%
LSTM 25.87 14.82 17.48% 31.82 17.56 23.47% 40.83 20.94 36.34% 48.31 23.87 38.45%
GRU 26.13 15.11 18.68% 34.79 18.67 31.23% 46.37 22.82 50.63% 50.47 2523 4337%
GCN 25.17 14.81 16.10% 29.72 17.75 17.36% 40.83 24.03 24.98% 47.58 26.45 24.10%
GAT 21.79 13.31 15.01% 26.07 15.82 16.82% 31.21 18.42 19.16% 37.62 21.51 20.26%
STGCN 26.78 15.51 15.86% 36.53 19.94 20.03% 51.81 25.88 27.00% 66.38 32.19 37.471%
Graph-WaveNet ~ 22.42 13.23 14.74% 25.84 14.09 15.96% 32.96 15.39 17.11% 35.08 16.21 1831%
T-GCN 26.38 15.53 16.32% 29.43 17.05 17.96% 32.79 18.55 20.37% 32.90 19.21 20.76%
TGC-LSTM 23.61 14.65 18.13% 24.85 15.43 18.29% 27.95 16.73 2221% 30.08 16.99 20.28%
PVCGN 24.15 13.77 14.81% 23.83 13.92 15.44% 24.03 14.06 16.38% 24.69 14.37 17.65%
SARGCN 19.66 12.07 13.72% 21.10 12.88 14.19% 23.22 13.89 15.78% 24.67 14.59 17.34%
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Figure 9 Comparison of prediction results and ground truth based on SARGCN model

performance of SARGCN on the Shenzhen metro dataset.

5.3.2 Hangzhou metro system

To evaluate the prediction performance of SARGCN model on the Hangzhou metro system, we

directly introduce the experimental results in the previous study (Liu et al., 2020). The prediction

performance in the Hangzhou metro system is summarized in Table 6. In the baselines, there are

three traditional time series models, three general deep learning models, and six recently-proposed
graph networks (i.e., ASTGCN (Guo et al., 2019), STG2Seq (Bai et al., 2019a), DCRNN (Li et al.,
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2017a), GCRNN, Graph-WaveNet (Wu et al., 2019), PVCGN (Liu et al., 2020)). From this table,
we can find that the proposed SARGCN model can achieve the lowest RMSE and MAE at 15-min
among all the state-of-the-art methods. Although the MAE of PVCGN is lower than SARGCN with
the prediction horizontal increases, our SARGCN model always shows superior performance on
RMSE. Meanwhile, compared with the MAE of SARGCN, PVCGN reduces 0.55% (30-min),
0.86% (45-min), and 1.42% (60-min). However, compared with SARGCN, PVCGN increases the
RMSE by 3.99%, 3.91%, and 2.45% for 30-min, 45-min, and 60-min, respectively. According to
these experimental results, the improvement of SARGCN in RMSE is higher than the decrease in
MAE. Hence, these comparisons indicate that the proposed SARGCN model can achieve higher
prediction accuracy. However, since our SARGCN model lacks the Seq2Seq structure (Sutskever
et al., 2014), its prediction performance will decrease to a certain extent in long-scale prediction.

Table 6 Quantitative comparison of the whole ridership in Hangzhou metro system

15 min 30 min 45 min 60 min
RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE
HA 64.19 36.37 19.14% 64.10 36.37 19.31% 63.92 36.23 19.57% 63.72 35.99 20.01%
RF 53.52 32.19 18.34% 64.54 38.00 21.46% 80.06 45.78 26.51% 94.29 52.95 37.12%
GBDT 51.50 30.88 17.60% 61.94 36.48 20.49% 76.70 44.12 25.75% 91.21 5110 38.10%
MLP 46.55 26.57 16.26% 47.96 27.44 17.10% 50.66 28.79 19.01% 54.62 30.52 22.56%
LSTM 45.30 25.76 14.91% 45.52 26.01 15.10% 46.30 26.38 15.40% 47.53 26.76 16.34%
GRU 45.10 25.69 15.13% 45.26 25.93 15.35% 46.13 26.36 15.79% 47.69 26.98 17.20%
ASTGCN 46.19 27.34 15.05% 46.16 27.74 15.56% 46.79 28.20 16.48% 49.70 28.85 17.75%
STG2Seq 39.52 23.80 17.09% 40.72 2472 19.51% 43.36 25.98 23.59% 46.05 26.50 27.93%
DCRNN 40.39 23.76 14.00% 42.57 25.22 14.99% 46.26 26.97 16.19% 49.35 28.47 18.16%
GCRNN 40.24 23.84 14.08% 41.95 25.14 14.86% 45.53 26.82 16.05% 50.28 28.75 17.89%
Graph-WaveNet 40.78 24.07 14.27% 42.80 25.48 15.23% 45.84 27.15 17.34% 49.89 29.14 19.37%
PVCGN 37.76 22.68 13.70% 39.34 23.33 13.81% 40.95 24.22 14.45% 42.61 24.93 15.49%
SARGCN 36.22 22.48 13.94% 37.83 23.46 14.99% 39.41 2443 16.25% 41.59 25.29 17.60%

In addition to the prediction performance, we further compare the computational costs between
SARGCN and PVCGN on the Hangzhou dataset in Table 7. These comparisons are conducted on
the same workstation and batch size to ensure fairness. This table indicates that SARGCN can
reduce computational costs significantly. In particular, the number of parameters in SARGCN is
only 3.51% of those in PVCGN. This phenomenon demonstrates that the proposed SARGCN model
is much lighter than the state-of-the-art baseline. Furthermore, concerning the computational
efficiency, SARGCN is just 49.1% of PVCGN in the average training time of each epoch. Hence,
we can conclude that SARGCN can reduce training costs in terms of both the number of parameters
and training efficiency. Therefore, it is more friendly and suitable for real-world applications in
metro management.

Table 7 Computational efficiency comparisons on the Hangzhou metro dataset

PVCGN SARGCN
Parameter amount 3.76 x 107 1.32 x 10°
GPU occupation 7655 MiB 4859 MiB
Average training time 22.88 s/epoch 11.23 s/epoch

20
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5.4 Error distribution analysis

The evaluation metrics shown in the above tables measure the prediction performance in terms
of average errors. To further validate the prediction accuracy, it is also essential to explore the error
distributions of each data point and station. Figure 10 expresses the actual distribution of ground
truth and prediction results of both inflow and outflow. As shown in these figures, the slopes of the
fitted lines are close to 1, thus indicating that the predicted values can effectively match the ground
truth. Although there are still errors, these data points are closely fitted and evenly distributed on
both sides of the fitted line. Meanwhile, the heatmaps show that the metro passenger flow is
concentrated at a lower level, and the quantity of data points decreases significantly with increasing
passenger flow. Overall, regardless of whether the passenger flow is large or small, SARGCN can
achieve reliable and accurate predictions.

In addition, we further explore the error distributions among all the metro stations. Different travel
patterns of each station may lead to different prediction performances. Thus, we employ RMSE and
MAE of each station to illustrate boxplots in Figure 11(a) and Figure 11(b), respectively. These two
figures indicate that there are fewer abnormal data in SARGCN, and its error indicators of boxplot
are generally lower than other models. This phenomenon reveals that SARGCN can always perform

more accurately on each metro station and reduce outliers.
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Figure 11 Boxplot of RMSE and MAE for all the GNN-based models on the Shenzhen metro
system
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5.5 Ablation experiments

According to the model structure, R-GCN (or the knowledge graph) and split-attention
mechanism are the vital components of the SARGCN model. In this subsection, we further conduct
an ablation experiment to evaluate the importance of these two components.

The prediction performances of GCN, R-GCN, SAGCN (i.e., split-attention graph convolutional
network), and SARGCN model in the Shenzhen metro system are illustrated in Figure 12, and
differences among these models are displayed in Table 8. From the prediction results shown in the
following figures, several conclusions can be summarized.

Table 8 Differences of models in ablation experiment

Category Knowledge graph Split-attention
GCN x X
R-GCN V X
SAGCN X \/
SARGCN V \/
30F ' GCN 'SAGCN ] 17.5F " GCN "SAGCN E
55t R-GCN SARGCN 1 15.0F R-GCN SARGCN
o 20| 1 12.5F 3
@ = 100F :
15 1 3
2 > s -
10 b ] 5.0F J
st ] 25% 3
, ' : 0.0 b—— : Y
inflow outflow  whole ridership inflow outflow  whole ridership
Flow type Flow type
(a) RMSE (b) MAE

Figure 12 Ablation experiment results of SARGCN on the Shenzhen metro system

(1) It is evident that R-GCN and SARGCN significantly outperform GCN and SAGCN,
respectively. For the whole ridership, the RMSE of R-GCN decreases by 17.15% compared with
GCN on the 1-step prediction task, and SARGCN achieves a 15.10% improvement than SAGCN.
Therefore, we can conclude that the knowledge graph plays a vital role in metro passenger flow
prediction and dramatically improves prediction performance.

(2) From the prediction comparison of R-GCN and SARGCN on the whole ridership, we can find
that RMSE and MAE decrease by 6.23% and 5.44%, respectively. And from the comparison
between GCN and SAGCN, the improvement reaches 8.51% and 5.67%. Meanwhile, comparing
SARGCN and R-GCN models on the inflow and outflow, the evaluation metrics express that
SARGCN can achieve improvement on both inflow and outflow. This is because the split-attention
mechanism can explore both the temporal dynamics and the dependencies between inflow and
outflow. Many studies note that the group convolution operation can reduce the number of
parameters. Although we replace all the convolution operations in the split-attention mechanism
with R-GCN operation, SARGCN can also achieve parameters reducing by 11.29% (from 829,006
in R-GCN to 735,372 in SARGCN), thereby leading to a lightweight model.

(3) Since the prediction accuracy of SARGCN further outperforms its components, the results of
the ablation experiment also indicate that the combination of knowledge graph and split-attention
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mechanism is helpful in improving prediction performance.

Furthermore, Figure 13 illustrates the training loss and validation loss during training on the
Shenzhen metro system. Because we apply the early-stop strategy on these deep learning models to
avoid overfitting, there is a difference in the epochs when they stop training. Since GCN and
SAGCN overlook the information on the established knowledge graph, their MSEs are always much
higher than that of R-GCN and SARGCN. For the models with the split-attention mechanism (i.e.,
SAGCN and SARGCN), although their convergence speeds are slower than other models, they can
avoid precocious convergence effectively. Hence, they can search for more appropriate parameters
to obtain higher accuracies than GCN and R-GCN. According to the principles of SAGCN and
SARGCN, the main reason for precocious convergence is that there are several parallel models in
the split-attention mechanism. The prediction performance of SARGCN and SAGCN not only relies
on the prediction results of each parallel model but also depends on the aggregation of these parallel
models. Therefore, searching for the appropriate parameters for each model and the aggregators will

increase the training time, but this increased training time cost can improve prediction performance.
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Figure 13 Performance comparison of SARGCN and its corresponding models at different
training epochs

5.6 Graph construction method analysis

To validate the effectiveness of the graph construction method, we compare the prediction
performance of the physical metro network and constructed directed graph of the Shenzhen metro
system. The comparison results are displayed in Figure 14. Here, both of these graphs are
transformed to knowledge graphs. To distinguish them, we name these two graphs as the physical
network and constructed graph, respectively. The results show that the SARGCN based on the
constructed graph consistently outperforms that on the physical network. Concerning the
constructed graph, the RMSE and MAE of 1-step prediction are reduced by 5.80% and 6.42%,
respectively. Moreover, Figure 15(a) and Figure 15(b) show that most metro stations can achieve
more accurate prediction performance on the constructed graph. Specifically, the percentages of
stations with a reduced RMSE and MAE are 88.6% and 95.2%, respectively.

Besides, we also explore the distributions of the reduced prediction errors in Figure 15(c) and
Figure 15(d). According to these figures, the reduced prediction errors similarly follow the normal
distribution, and the average improvement is 1.07 for RMSE and 0.77 for MAE. These
improvements suggest that the constructed graph has a more powerful capability to capture the
spatial dependence of the metro system, and combining it with the proposed SARGCN model is an
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1  appropriate direction to improve metro passenger flow prediction performance.
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Figure 14 Performance comparison of SARGCN on the constructed graph and physical network
in the Shenzhen metro system
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Figure 15 Distribution of reduced prediction errors by the metro graph construction method in
the Shenzhen metro system
3 Moreover, we further analyze the OD passenger flow distributions on these two graphs, and the
4 results are illustrated in Figure 16. In this figure, the OD passenger flows on the self-loop edges are
5  notinvolved. It is evident that OD passenger flows on the connected edges of the physical network
6  are significantly lower than those of the constructed graph. In other words, there are more frequent
7  passenger flow interactions between the adjacent stations on the constructed graph, while the

24



1
2

a b

10
11
12
13
14
15

physical network always ignores these features. Therefore, since the constructed graph can explore

this dependence from travel behaviors, it can obtain higher prediction accuracy.
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Figure 16 OD passenger flow distribution of the connected edges on the constructed graph and
physical network in the Shenzhen metro system

5.7 Knowledge graph analysis

The prediction performance comparisons in Section 5.5 demonstrate that the established
knowledge graph positively impacts prediction accuracies. In this subsection, we further explore the

properties of the knowledge graph.
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Figure 17 Traffic features distributions between different types of stations in the Shenzhen
metro system

In the established knowledge graph, the proportion of metro stations with different semantic types
is 24.7%: 15.7%: 22.9%: 10.8%: 25.9%. Among all the types, stations with type 1 (i.e., resident
area) account for the largest proportion. Moreover, Figure 17(a) and Figure 17(b) illustrate the
probability density distribution of monthly average day traffic (MADT) and RMSE under different
semantic types. According to the MADT distribution, each type has its unique characteristics, and
these differences can be effectively distinguished by the knowledge graph construction method.
Meanwhile, an interesting finding is obtained from the probability density distribution of MADT
and RMSE. For instance, the MADT distribution of type 5 is always lower than that of type 2.
However, as the RMSE distribution comparison shows, the probability density of type 5 is much
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higher than type 2 when RMSE is higher than 20. The reason may be that type 5 includes many
transfer nodes with other modes of transportation (e.g., buses, railways, and airplanes). Hence,
passenger flows at these stations mainly originate from other transportation modes. The imbalanced
schedules of other transportation modes easily produce randomness and instabilities in metro
passenger flows. Therefore, it brings significant challenges for accurate prediction, leading to higher
prediction errors. This finding reveals that the knowledge graph can capture and distinguish the
travel patterns of each station type to promote spatial correlation mining.

6. Conclusion

This study proposes a deep learning framework named split-attention relational graph
convolutional network (SARGCN) to address the network-scale metro passenger flow prediction.
Unlike previous studies, which directly apply the physical metro network for GNNs, we develop a
metro knowledge graph construction method to adapt the travel behavior. Specifically, the historical
OD matrix is extracted and employed as the similarity measure to construct the metro topological
graph. Then, we utilize the land-use features to represent the semantic types of each station, aiming
to establish a knowledge graph based on the constructed directed graph. To further explore the
spatiotemporal dependencies on the established knowledge graph, we propose the SARGCN model,
by integrating the R-GCN, split-attention mechanism, and LSTM. Validated on the Shenzhen and
Hangzhou metro system, SARGCN expresses superiority compared to widely-used baselines and
state-of-the-art methods.

However, this study still has several limitations. For instance, various payment methods, such as
smart cards and mobile payments, have been developed for metro systems in recent years. However,
due to the barriers in research data collection, this study only extracts the smart card data for
passenger flow analysis and prediction. Since passenger travel behavior may differ by payment
method, fully considering these differences might enhance spatiotemporal correlation analysis.
Moreover, many studies demonstrate that external information, such as weather and special events
(Xue et al., 2022), also impacts the metro passenger flow, which is not involved in this study.

According to the limitations and challenges of this study, the following suggestions might be
interesting directions for future work.

(1) Metro is a critical component in the urban transit system, and its passengers always source
from other transportation modes, e.g., buses, bike-sharing, etc. So, introducing the real-time
passenger distributions of other transportation modes may improve prediction performance.

(2) In addition to predicting the inflow and outflow, OD passenger flow prediction (Dai et al.,
2018; Hussain et al., 2021; Zhang et al., 2021) is also a hot topic in this field. From the essence of
these two passenger flows, the former denotes the number of passengers entering and exiting the
metro system, and the latter reflects the passenger flow direction and evolution process within this
system. Future works can further explore the dependence between these two flows and integrate
these two tasks to improve prediction performance.

(3) An increasing number of researchers have paid attention to inductive learning tasks in traffic
prediction (Wu et al., 2020). Graph neural networks with inductive learning ability can be applied
to different topology networks and achieve acceptable performance. Since metros are rapidly
constructed and developed, a robust model with strong generalization to different topological graphs

is needed. Thus, inductive learning has excellent potential in metro passenger flow prediction.
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Appendix

The important abbreviations used in this study is summarized as follows.
Table 9 The important abbreviations used in this paper

Abbreviations Description

GCN Graph convolutional network.

GNN Graph neural network.

LSTM Long short-term memory network.

MADT Monthly average day traffic of passenger flow.

MAE Mean absolute error, mathematically expressed by Equation 24.
Mean absolute percentage error (MAPE) on metro stations with the top

MAPE@10
10% largest passenger flow.

OD matrix Origin-destination (OD) matrix.

POI Point of interest data, which represents the land-use characteristics in the
urban area.

R-GCN Relational graph convolutional network.

RMSE Root mean square error, mathematically expressed by Equation 23.

SAGCN Split-attention graph convolutional network, which use the GCN layer to
replace the R-GCN layer in SARGCN.

SARGCN Split-attention relational graph convolutional network proposed by this
study.
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Highlight

® This paper models the metro system as knowledge graph for passenger flow
prediction.

® [t combines traffic patterns and land-use features for knowledge graph
construction.

® [t proposes a SARGCN model for spatiotemporal prediction on metro
knowledge graphs.

® [t uses an attention mechanism to learn the correlation between inflow and
outflow.

® Validated on two metro datasets, it outperforms numerous advanced baselines.
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