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1 Abstract: 
2 With the rapid development of intelligent operation and management in metro systems, accurate 
3 network-scale passenger flow prediction has become an essential component in real-time metro 
4 management. Although numerous novel methods have been applied in this field, critical barriers 
5 still exist in integrating travel behaviors and comprehensive spatiotemporal dependencies into 
6 prediction. This study constructs the metro system as a knowledge graph and proposes a split-
7 attention relational graph convolutional network (SARGCN) to address these challenges. Breaking 
8 the limitations of physical metro networks, we develop a metro topological graph construction 
9 method based on the historical origin-destination (OD) matrix to involve travel behaviors. Then, we 

10 design a metro knowledge graph construction method to incorporate land-use features. To adapt 
11 prior knowledge of metro systems, we subsequently propose the SARGCN model for network-scale 
12 metro passenger flow prediction. This model integrates the relational graph convolutional network 
13 (R-GCN), split-attention mechanism, and long short-term memory (LSTM) to explore the 
14 spatiotemporal correlations and dependence between passenger inflow and outflow. According to 
15 the model validation conducted on the metro systems in Shenzhen and Hangzhou, China, the 
16 SARGCN model outperforms the advanced baselines. Furthermore, quantitative experiments also 
17 reveal the effectiveness of its component and the constructed metro knowledge graph. 
18 Keywords: passenger flow prediction, urban metro system, knowledge graph, graph neural network, 
19 deep learning

20 1. Introduction 

21 Among all modes of urban public transportation, the metro system has attracted attention from 
22 transportation planners and managers due to its advantages of high speed, large capacity, and 
23 punctuality. Although these advantages help the metro system attract more passengers, the 
24 imbalance between travel demands and services has become increasingly severe. Many metro 
25 stations, especially the critical nodes in the metro network, always face the intense challenge of 
26 congestion. These issues negatively affect on the travel experience of passengers and reduce the 
27 attractiveness of metro systems. 
28 In recent years, since many compelling scenarios of the internet of things (IoT) have been applied 
29 in metro operations, transportation administration can quickly obtain real-time states of the metro 
30 system. Based on real-time information from advanced data collection and processing technologies, 
31 numerous emerging applications have been conducted. To relieve pressure in metro operations, the 
32 administration not only needs to grasp the current conditions but also to forecast their future 
33 variations in advance. Therefore, accurate passenger flow prediction in metro systems has become 
34 an essential task in recent years.
35 According to the prediction horizons, metro passenger flow prediction can be classified into three 
36 major categories (Ma et al., 2019): long-term, medium-term, and short-term prediction. Long-term 
37 and medium-term passenger flow predictions are vital in metro planning and development. For these 
38 purposes, researchers mainly employ the four-step travel demand forecasting model (Agrawal et al., 
39 2018; McNally, 2007) and geographically weighted regression (GWR) (Daniel et al., 2012) to 
40 predict future (e.g., monthly, annual, etc.) demand. Generally, the abovementioned two prediction 
41 tasks focus on metro policy and planning, but they cannot meet the needs of real-time applications. 
42 Since real-time information is beneficial to avoiding congestion and balancing transportation 
43 resources (Zhang et al., 2020b), the importance of short-term passenger flow prediction is 
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1 increasingly highlighted. 
2 Previous studies on short-term passenger flow prediction can be further divided into station-level 
3 and network-scale predictions. The former aims to forecast the future passenger flow of a specific 
4 station. Since the temporal dependence of passenger flow is the basis of this task, the involved 
5 prediction methods include statistical methods, machine learning methods, and recurrent neural 
6 network (RNN) based deep learning methods. In the opposite, the latter focuses on predicting future 
7 passenger flows of each station simultaneously. In addition to the temporal dependence, exploring 
8 the spatial correlation is also essential to achieving accurate predictions. Therefore, several novel 
9 deep learning models with powerful spatial correlation extraction capability, e.g., convolutional 

10 neural network (CNN) and graph neural network (GNN), have widely attracted the attention of 
11 researchers. 
12 Since the abovementioned station-level prediction models rarely consider the spatial correlation 
13 in the metro network, these models always suffer from limited prediction performance. Furthermore, 
14 this category of prediction models needs to conduct training on each station separately, so the 
15 training and storage costs approximately linearly increase with the metro network scale. Overall, 
16 the station-level prediction methods are unsuitable for predicting future passenger flows of all the 
17 stations in the metro network. Therefore, in recent years, researchers have preferred network-scale 
18 prediction models. As there are typical topological structures in metro systems, GNNs are widely 
19 applied in this field and have consistently achieved state-of-the-art performance. 
20 Although numerous novel methods have been applied in this field, several critical issues are still 
21 unaddressed: 
22 (1) In GNN-based models, researchers must construct a reasonable graph in advance, which plays 
23 a vital role in prediction performance. In numerous studies, the graphs are directly established 
24 according to the physical adjacency relationship (i.e., the topology of the metro network) (Han et 
25 al., 2019; Ye et al., 2020; Zhang et al., 2020b). However, these graph construction methods always 
26 overlook metro travel behaviors. Thus, how to fuse travel behaviors and features into graph 
27 construction principles still needs further exploration. 
28 (2) Travel demands and behaviors are significantly associated with land-use characteristics (Jun 
29 et al., 2015), but only a few studies (He et al., 2020; Lin et al., 2020) consider this vital factor in 
30 metro passenger flow prediction. These studies attempt to address metro passenger flow prediction 
31 using statistical methods or shallow machine learning methods, so there is a lack of exploration of 
32 the spatiotemporal dependencies in network-scale passenger flow. GNNs are always regarded as 
33 powerful tools in this field (Han et al., 2019; Liu et al., 2020; Ye et al., 2020; Zhang et al., 2020b), 
34 but land-use features are rarely introduced into GNNs for metro passenger flow prediction. Thus, 
35 effectively integrating the land-use features and GNN model to improve prediction accuracy is still 
36 a challenge. 
37 (3) Spatiotemporal correlations of passenger flow at different stations need further mining to 
38 improve prediction performance. There are two passenger flows at each metro station: inflow (i.e., 
39 the number of passengers in the origin station) and outflow (i.e., the number of passengers in the 
40 destination station). Since the outflow of each station consists of the inflow of the remaining stations 
41 in the metro network, the inflow and outflow are correlated in the spatial and temporal dimensions. 
42 However, few current studies explore this relationship in passenger flow prediction. Additionally, 
43 passenger flows in different regions also follow specific travel patterns. For instance, commuting 
44 will cause the metro passenger flow around industrial and residential regions to show the opposite 
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1 trend. These spatiotemporal regularities are also vital for metro passenger flow analysis and 
2 prediction. 
3 To fill these gaps, we propose a deep learning framework for short-term metro passenger flow 
4 prediction, named split-attention relational graph convolutional network (SARGCN). To adapt 
5 metro travel behaviors and operation principles, we extract the historical OD matrix from the smart 
6 card data as the similarity measure and employ the complex network construction method 
7 (Cupertino et al., 2013) to establish a topological graph. Since land-use features significantly impact 
8 metro travel demands and behaviors, we introduce the point of interest (POI) data to transform the 
9 constructed topological graph into a metro knowledge graph. Then, a spatiotemporal learning 

10 framework, i.e., the SARGCN, is proposed for network-scale metro passenger flow learning and 
11 prediction based on the established knowledge graph. In summary, the major contributions of this 
12 study are concluded as follows: 
13 (1) We develop a metro topological graph construction method based on the historical OD matrix 
14 and complex network construction algorithm. Compared with the physical metro network, this data-
15 driven graph construction method is adaptive to metro travel patterns, so the spatial correlation on 
16 the graph is enhanced. 
17 (2) Based on the land-use features around metro stations, a metro knowledge graph construction 
18 method is designed and applied to the constructed metro topological graph. In this way, each station 
19 is assigned a specific semantic type to provide essential prior knowledge for the deep learning 
20 model. 
21 (3) We propose the SARGCN model for network-scale metro passenger flow prediction. In this 
22 model, the R-GCN, split-attention mechanism, and LSTM are effectively incorporated to learn the 
23 spatiotemporal correlations and dependencies between inflow and outflow on the constructed metro 
24 knowledge graph. 
25 (4) Validated on the metro systems in Shenzhen and Hangzhou, China, the proposed SARGCN 
26 model expresses a superior performance than the advanced baselines in terms of accuracy and 
27 efficiency. Additionally, the ablation experiment results also demonstrate the effectiveness of each 
28 component. 
29 The organization of this paper is summarized as follows. Section 2 discusses the existing studies 
30 in the field of short-term metro passenger flow prediction. We briefly describe the metro passenger 
31 flow and land-use data involved in this study in Section 3. Section 4 introduces the detailed 
32 methodology of the proposed metro knowledge construction method and SARGCN model. Section 
33 5 shows the experimental results and discussions. Finally, we conclude this study and summarize 
34 the research directions for future works in Section 6. 

35 2. Literature review

36 2.1 Station-level prediction methods

37 Due to the limitation of computing capability, statistical methods won the favor of researchers in 
38 the early stage of metro passenger flow prediction. Statistical methods always regard the previous 
39 ridership of each station as sequence data and employ time-series analysis models to make 
40 predictions. Among all the time-series analysis models, the autoregressive integrated moving 
41 average (ARIMA) model (Chen et al., 2020; Wen et al., 2022) and its variants are the most famous 
42 methods in metro passenger flow prediction. Meanwhile, other statistical methods, such as the 
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1 Kalman filter (Sun et al., 2014) and generalized autoregressive conditional heteroskedasticity 
2 (GRACH) (Ding et al., 2018), are also widely applied in this task. However, these statistical methods 
3 always encounter limitations in exploring the nonlinear characteristics of traffic data (Zhao et al., 
4 2020a) and have high computational complexity (Zhang et al., 2019). Additionally, these methods 
5 may encounter challenges when facing complex conditions and big data (Zhou et al., 2020). 
6 To fill these gaps, numerous machine learning models have been developed for metro passenger 
7 flow prediction, including artificial neural network (ANN) (Li et al., 2019; Li et al., 2017b; Wei & 
8 Chen, 2012; Zhao et al., 2011), support vector machine (SVM) (Sun et al., 2015; Tang et al., 2019a), 
9 decision trees (Ding et al., 2016; Zhao et al., 2020b), and Bayesian networks (Lin et al., 2017; Roos 

10 et al., 2017). Although these machine learning methods can usually achieve higher prediction 
11 accuracies than traditional statistical methods, their prediction performances are still unsatisfactory 
12 for real-time applications of metro systems. Meanwhile, machine learning methods always face 
13 significant challenges to capturing the temporal dynamics in passenger flow. Facing a dramatic 
14 increasement in the scale of metro data and metro management demands, researchers widely apply 
15 deep learning methods in this field and have demonstrated their superiority to traditional methods. 
16 Since metro passenger flow is highly temporally dependent, recurrent neural network (RNN) and 
17 its famous variants, i.e., long short-term memory (LSTM) (Tang et al., 2019b) and gated recurrent 
18 unit (GRU) (Zhang & Kabuka, 2018) are widely employed to mine its time-varying dynamics. 
19 Meanwhile, to improve prediction performance under anomalous large passenger flow, (Zheng et 
20 al., 2020) employed the complex network theory to collective behavior modeling, and then a hybrid 
21 model was subsequently proposed to capture the time-varying characteristics of passenger flow. 

22 2.2 Network-scale prediction methods

23 To solve the limitation of traditional station-level prediction methods, many researchers have paid 
24 attention to network-scale passenger flow prediction models. Hao et al. (2019) proposed a sequence 
25 to sequence (Seq2Seq) model based on LSTM and the attention mechanism for network-scale 
26 passenger prediction. Additionally, this model further introduced external features (e.g., weather, 
27 special events, etc.) into the prediction framework. Ma et al. (2019) transformed metro ridership 
28 into grid-based data and then combined CNN with bidirectional LSTM to construct a parallel 
29 architecture for prediction. Ning et al. (2018) designed a residual unit and introduced external factors 
30 into metro passenger flow prediction. However, since metro stations are sparsely distributed in the 
31 urban areas, Liu et al. (2019) demonstrated that metro networks are unsuitable for transforming into 
32 grid-based data. Hence, they manually designed high-level features to represent the spatial 
33 correlation to achieve accurate prediction. 
34 To further promote passenger flow prediction accuracy, researchers also turned to GNN-based 
35 methods to involve topological information in prediction models. Zhang et al. (2020b) integrated 
36 the ResNet (He et al., 2016), GCN (Kipf & Welling, 2016), and attention-based LSTM to construct 
37 the ResLSTM model for metro passenger flow prediction. Ye et al. (2020) proposed a Multi-
38 STGCnet model, which employed the LSTM and GCN to extract the temporal and spatial 
39 dependencies of metro passenger flow, respectively. Relying on the physical metro network, Wang 
40 et al. (2021) constructed metro hypergraphs to involve OD passenger flow and proposed a dynamic 
41 spatiotemporal hypergraph neural network (DSTHGCN) for prediction. Ou et al. (2020) integrated 
42 diffusion graph convolutional networks with a novel temporal convolutional model (i.e., TrellisNet 
43 (Bai et al., 2019b)) to explore the spatiotemporal dependencies of metro passenger flow. 
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1 Actually, there is a typical tunnel effect from the perspective of metro operation regularities and 
2 passenger travel behaviors. That is, passengers are more inclined to take the metro on long-distance 
3 travel instead of going to the nearby stations. Therefore, it is challenging for physical metro 
4 networks to capture this travel behavior. Liu et al. (2020) proposed a physical-virtual collaboration 
5 graph network (PVCGN) model, which integrates a physical graph, a similarity graph, and a 
6 correlation graph for metro ridership and online OD ridership prediction. However, the similarity 
7 graph and correlation graph are based on the -nearest neighbors (i.e., connecting each node to its 𝑘
8  most similar nodes) and the -radius principles (i.e., connecting each node to nodes within 𝑘 𝜀
9 distance threshold ). Thus, the constructed network only focuses on the similarity at the node level 𝜀

10 while ignoring the optimality at the network level. Meanwhile, land-use features are also a typical 
11 factor to represent the travel behavior of metro passenger flow, but they are rarely considered in 
12 network-scale passenger flow prediction. Overall, a brief summary of this study and current novel 
13 models in this field is displayed in Table 1. 
14 Table 1 Comparison of network-scale prediction models in metro passenger prediction

Land-use features Travel behavior
Correlation of 
in & out flow

ResLSTM × × √
DSTHGCN × √ ×
PVCGN × √ √
SARGCN √ √ √

15 3. Data description

16 3.1 Metro data

17 This study applies the smart card data collected in Shenzhen and Hangzhou, China, to validate 
18 the proposed model. The smart card records include smart card ID, collection machine ID, state (i.e., 
19 enter or exit), collection time, metro line, and metro station. Passenger travel features, such as the 
20 travel time matrix and OD matrix, can be extracted from this data source. We count the number of 
21 passengers entering and leaving each station from the original smart card records, named inflow and 
22 outflow. Furthermore, we also extract the historical OD matrix from the smart card records to 
23 measure the spatial dependence between different metro stations. 
24 The detailed descriptions of these two datasets are introduced as follows: 
25 (1) Shenzhen city. The Shenzhen metro network includes 166 metro stations, and the collection 
26 duration of smart card records ranges from May 1st to May 31st in 2019. According to the actual 
27 operation time of the metro system, only the records between 6:00 am and 11:00 pm are used in this 
28 study. For this dataset, we aggregate the inflow and outflow of each station every 10 minutes. Thus, 
29 the inflow and outflow of each station can be regarded as a time-series with 102 records per day. 
30 (2) Hangzhou city. This dataset is released by (Liu et al., 2020) via an accessible link1. In this 
31 dataset, there are 80 metro stations in total. All the data is collected in January 2019, and the time 
32 interval of passenger flow is set as 15 minutes. 

1https://github.com/HCPLab-SYSU/PVCGN
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1 3.2 Land-use data

2 Lin et al. (2020) demonstrated that land-use features vitally affected metro passenger flows. POI 
3 data refer to specific points with different functional attributions in urban areas and are widely used 
4 in travel pattern analysis (Krause & Zhang, 2019). Therefore, we utilize the POI data to reflect the 
5 land-use characteristics around each metro station for passenger flow analysis and prediction. The 
6 POI data involved in this study are collected by the application programming interface (API) of 
7 Baidu Map2. The original POI data have 19 categories and 140 subcategories. We merge similar 
8 categories according to the definition of land-use attributes and finally obtain five categories. The 
9 detailed descriptions of these five merged categories are displayed in Table 2. 

10 Table 2 Classification and description of POI data

Category Contents

residential area residential area, dormitory, etc.
leisure and entertainment restaurants, cinema, shopping center, etc.
education institution colleges, high schools, kindergartens, etc.
corporate company company, factory, etc.
transportation hub airports, railway stations, bus stations, etc.

11 4. Methodology 

12 4.1 Problem formulation

13 Assume  and  denote the feature matrices of inflow and outflow at time I𝑡 ∈ ℝN × M O𝑡 ∈ ℝN × M

14 interval , respectively, where  represents the number of stations and  denotes the number of 𝑡 N M
15 previous time steps. The metro passenger flow prediction task in this study can be summarized as 
16 follows: given the previous passenger flow (  and ) and a knowledge graph ( ), aim to learn a I𝑡 O𝑡 𝔾
17 mapping function  to predict inflow ( ) and outflow ( ) at the -th step 𝔽( ⋅ ) 𝒊𝑡 + 𝑝 ∈ ℝN 𝒐𝑡 + 𝑝 ∈ ℝN 𝑝
18 afterward at each station. 

(𝒊𝑡 + 𝑝,𝒐𝑡 + 𝑝) = 𝔽(I𝑡,O𝑡; 𝔾) (1)

19 4.2 Metro knowledge graph construction

20 4.2.1 Metro topological graph construction

21 The tunnel effect mentioned above is an unignored characteristic in metro travel behavior. 
22 According to the smart card data used in this study, the travel distance distribution in the Shenzhen 
23 metro system is displayed in Figure 1. Here, we employ the Floyd-Warshall algorithm and metro 
24 topological network to calculate the distance among metro stations. From this figure, an intuitive 
25 finding is that the majority of passengers select the metro as middle-distance and long-distance 
26 transportation, and few passengers take adjacent stations as their destinations. Specifically, the 
27 average travel distance is 7.60 stations, and only 6% of passengers stop at adjacent stations. This 
28 finding indicates that the passenger flow interactions between the adjacent metro stations are not 

2https://lbsyun.baidu.com/index.php?title=webapi/guide/webservice-placeapi
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1 strong enough. 

Figure 1 Travel distance distribution in the Shenzhen metro network
2 Furthermore, we illustrate the spatial distributions of the correlated stations for Laojie Station in 
3 Figure 2. Laojie Station is an important node in the Shenzhen metro network, which is the transfer 
4 station for Lines 1 and 3. Here, these four figures explore the positional relationship between Laojie 
5 Station and its correlated stations from the traffic perspective (i.e., origin and destination stations) 
6 and statistical perspective (i.e., Pearson correlation coefficient). Similarly, we can find that all the 
7 correlated stations are far apart from Laojie Station, instead of the neighbor stations. 

(a) top 5 origin and destination stations (b) top 5 correlated stations
Figure 2 Spatial distributions of correlated stations with Laojie Station

8 Following these findings, since the topological network overlooks these travel patterns, it is 
9 unsuitable for passenger flow prediction. Thus, it is essential to construct a reasonable graph that is 

10 adaptive to the travel behaviors of the metro system. This study employs the OD relationship among 
11 all the stations as the similarity measure for graph construction. Then, the complex network 
12 construction algorithm proposed by (Cupertino et al., 2013) is applied to build a directed graph. 
13 Unlike the simple -nearest neighbors and the -radius approaches (Liu et al., 2020), this data-𝑘 𝜀
14 driven construction method can connect correlated stations at the node level and consider optimality 
15 at the network level. Cupertino et al. (2013) utilized a distance measure for graph construction, so 
16 this method aimed to connect nodes with short distances. However, in this study, since we employ 
17 the OD relationship as a similar measure, we prefer the OD passenger flow on the edges in the 
18 constructed graph to be as large as possible. Thus, we replace the  and  min ( ⋅ ) max ( ⋅ )
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1 operations in this method with the corresponding  and  operations, respectively. max ( ⋅ ) min ( ⋅ )
2 Finally, we summarize this metro graph construction algorithm in Algorithm 1. 

Algorithm 1. Metro topological graph construction method. 
  Input: number of nodes, ; similarity matrix, ; N 𝐖OD ∈ ℝN × 𝑁

        hyperparameters,  and ; node set . K 𝜆 𝐕 = {𝑣1,𝑣2,...,𝑣𝑁}
  Output: adjacency matrix, . 𝐖𝑔 ∈ ℝN × 𝑁

  Process: 
 1.𝐖𝑔←zeros(N,N)
 2.  𝛀←{𝛚1,𝛚2,…,𝛚N} (𝛚𝑖 = {𝑣𝑖})
 3.𝐖Ω←𝐖OD

 4.while len( ) > 1 do𝛀
 5.  [𝛚𝑚,𝛚𝑛]←argmax(𝐖Ω)
 6.  𝑑𝜀←𝜆 ⋅ min(𝑑𝑚,𝑑𝑛)
 7.  [ ] (𝒗𝑠,𝒗𝑒 ←𝐬𝐞𝐥𝐞𝐜𝐭 𝛚𝑚,𝛚𝑛, K)
 8.  for k=1, …,  do K

 9.    if  do𝐖[𝒗𝑘
𝑠 , 𝒗𝑘

𝑒] > 𝑑𝜀

10.       𝐖𝑔[𝒗𝑘
𝑠 , 𝒗𝑘

𝑒]←1
11.    end
12.  end
13.   and delete 𝛚𝑚←concat(𝛚𝑚,𝛚𝑛) 𝛚𝑛

14.  update  among the current groups 𝐖Ω

15.end 
16.𝐖𝑔[𝑖,𝑖]]←1,  ∀𝑖 ∈ [1, N]

3 In this algorithm, the  operation in Step 7 aims to select the most similar  node 𝐬𝐞𝐥𝐞𝐜𝐭( ⋅ ) K
4 pairs from  and . Meanwhile,  and  represent the average similarity within node 𝛚𝑚 𝛚𝑛 𝑑𝑚 𝑑𝑛

5 groups  and , respectively. In Step 13,  denotes the concatenation operation, 𝛚𝑚 𝛚𝑛 𝐜𝐨𝐧𝐜𝐚𝐭( ⋅ )
6 which aims to join node groups  and  into a larger group. In Step 14,  is updated 𝛚𝑚 𝛚𝑚 𝐖Ω[𝑖,  𝑗]
7 by the similarity of the most similar node pair between node groups  and . Furthermore, since 𝛚𝑖 𝛚𝑗

8 the previous passenger flow of each station significantly affects its own future states, we apply a 
9 self-loop connection (i.e., Step 16) to each node to retain its previous influence.

10 4.2.2 Knowledge graph construction

11 According to the definition in (Hogan et al., 2020), a knowledge graph is a network that consists 
12 of entities with semantic types and relations between these entities. Since knowledge graphs can 
13 truthfully and powerfully reflect the dependencies between entities in the real world, it has been 
14 widely used in search engines, social networks, question answering, etc. In this study, we employ 
15 the POI data around metro stations to represent their semantic types to obtain the metro knowledge 
16 graph. 
17 Determining the semantic types of nodes and relationships between them is the key step in 
18 knowledge graph construction. In the previous study (Tang et al., 2020), POI data are generally 
19 classified into several categories and employed to assign a label to each station, according to the 
20 POI category with the maximum number around it. This method depends on the number of POI 
21 categories around each metro station, but overlooks the differences in the total number of each 
22 category. If there is a significant gap in the number of each category, it would be unfair to determine 
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1 the station type only based on the quantity. To obtain a more reasonable classification, we utilize 
2 the distribution frequency of each category to determine the station type, which is summarized in 
3 Equations 2 and 3. In these equations,  and  denote the number and distribution frequency of 𝑐𝑗

𝑖 𝑝𝑗
𝑖

4 POI category  around station , respectively.  represents the determined semantic type of 𝑗 𝑖 ℛ𝑖

5 station . In Equation 3, the type of each station is assigned as the POI category with the highest 𝑖
6 distribution frequency. 

𝑝𝑗
𝑖 =

𝑐𝑗
𝑖

∑N

𝑘 = 1
𝑐𝑗

𝑘
(2)

ℛ𝑖 = argmax
𝑗

𝑝𝑗
𝑖 (3)

7 Using the directed graph  constructed above, we can establish a metro knowledge graph by 𝒢
8 assigning the semantic types to corresponding stations. Therefore, the established knowledge graph 
9 can be denoted as . Here, , , and  represent the node set, edge set, and node 𝔾 = (𝒱,ℰ,ℛ) 𝒱 ℰ ℛ

10 types, respectively. 

11 4.3 Framework of the SARGCN

Figure 3 The framework of the proposed SARGCN model
12 Figure 3 illustrates the framework of the proposed prediction method. Based on the constructed 
13 knowledge graph, we integrate the R-GCN, LSTM, and split-attention mechanism to construct the 
14 SARGCN block. In each block, the R-GCN layer is applied to extract the spatial correlation on the 
15 established knowledge graph. Meanwhile, we employ the split-attention mechanism and LSTM to 
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1 capture the temporal dynamics of passenger flow and explore the dependence between inflow and 
2 outflow. The split-attention mechanism allows the input features to be divided into several groups. 
3 Then, the unique characteristics of each group are extracted and aggregated to incorporate global 
4 contextual information. After that, several SARGCN blocks are stacked together to improve the 
5 capability of hidden feature extraction. 

6 4.4 Spatial correlation modeling

7 R-GCN (Schlichtkrull et al., 2018) is an effective variant of GCN, and it develops a powerful 
8 capability to learn realistic knowledge bases. Thus, we adopt it to model the spatial dependence on 
9 the constructed metro knowledge graph. Supposing the input feature of R-GCN is 𝐇 = {𝒉1, 𝒉2, …, 

10 , where  denotes feature of node , the calculation details of R-GCN are summarized in 𝒉𝑁} 𝒉𝑖 𝑖
11 Equation 4 and Figure 4. 

𝒉𝑖′ = 𝜎(∑
𝑟 ∈ ℛ

∑
𝑗 ∈ ℕ𝑟

𝑖

1
𝑐𝑖𝑟

W𝑟𝒉𝑗 + W0𝒉𝑖) (4)

12

Figure 4 The calculation framework of R-GCN
13 Here,  stands for the number of node types which is set as 5 according to Table 1, and  ℛ ℕ𝑟

𝑖

14 denotes the neighbors of node  with type .  is a problem-specific normalization constant. To 𝑖 𝑟 𝑐𝑖𝑟

15 highlight the importance of each node itself compared with its neighbors,  is employed to W0

16 represent the particular connection type of the self-loops. 
17 Moreover, a regularization, named basis decomposition, is applied in Equation 4 to reduce the 
18 parameters by weight sharing. The regularization of  is a linear combination and described in W𝑟

19 Equation 5, where  and  represent the learnable basis transformations and coefficients, V𝑏 𝛼𝑟𝑏

20 respectively. 

W𝑟 =
𝐵
∑

𝑏 = 1
𝛼𝑟𝑏V𝑏 (5)

21 4.5 Temporal dependence modeling

22 In addition to the spatial correlation mentioned above, the metro passenger flow data still have 
23 two dependencies: (i) temporal dynamics; (ii) the dependence between inflow and outflow. Both of 
24 these dependencies are critical factors in improving prediction accuracy. Motivated by the 
25 breakthrough of the ResNeSt model (Zhang et al., 2020a) in computer vision, we integrate its core 
26 component, i.e., the split-attention mechanism, with R-GCN and LSTM model to model these two 
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1 vital dependencies. Specifically, the original split-attention mechanism employs the group 
2 convolution operation (Krizhevsky et al., 2017; Xie et al., 2017) to extract the feature-map attention 
3 and utilizes a weighted combination operation to mine global contextual information. Following 
4 this opinion, using the split operation, we design a graph-based group convolution operation on the 
5 previous passenger flow. Furthermore, since evident temporal dependence exists in passenger flow 
6 data, we employ LSTM to address this time-series characteristic. 

7 4.5.1 Feature split operation

8 Considering the dependence between inflow and outflow, we divide the previous passenger flow 
9 into  split groups (e.g., inflow and outflow). In traffic prediction, researchers have demonstrated 𝑆

10 that traffic data at different time steps show different influences on future states (Yang et al., 2019). 
11 Therefore, in this study, we further classify each split group into  cardinal groups (e.g., long-𝐶
12 scale, middle-scale, and short-scale) according to the temporal dimension. Supposing the temporal 
13 dimension of  and  is 6, the developed feature split operation under  and  is I𝑡 O𝑡 𝑆 = 2 𝐶 = 3
14 illustrated in Figure 5. Since each subgroup uniquely affects future passenger flow, using different 
15 models to capture the characteristics of each subgroup will help achieve accurate prediction results. 

Figure 5 An example of the feature split operation under , 𝑆 = 2 𝐶 = 3

16 4.5.2 Group graph convolution operation

17 The group convolution plays a vital role in the split-attention mechanism. The principle of this 
18 operation can be summarized as: output features can only receive information from input features 
19 in the same group. Hence, we adopt this opinion and propose a group convolution operation. The 
20 calculation process of the involved group R-GCN operation is summarized in Equations 6 and 7, 
21 where  denotes the input features of node  in group , and  represents the corresponding 𝒉𝑙

𝑖 𝑖 𝑙 𝒉𝑙
𝑖
′

22 output features. Meanwhile, the difference between the graph convolution operation and group 
23 graph convolution is displayed in Figure 6. 

𝒉𝑙
𝑖
′ = 𝜎(∑

𝑟 ∈ ℛ
∑

𝑗 ∈ ℕ𝑟
𝑖

1
𝑐𝑖𝑟

W𝑟𝒉𝑙
𝑗 + W0𝒉𝑙

𝑖) (6)

𝒉𝑖′ = concat(𝒉1
𝑖

′, 𝒉2
𝑖

′,..., 𝒉𝐿
𝑖

′) (7)
24
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(a) graph convolution operation (b) group graph convolution operation
Figure 6 The structure of graph convolution operation and group graph convolution operation

1 4.5.3 LSTM layer

2 As shown in Figure 5, we group the input features according to the temporal dimension. Thus, 
3 temporal dependence exists among these groups. Many studies have demonstrated the strong ability 
4 of LSTM to handle time-series data (Ma et al., 2015), so we employ it to model the temporal 
5 dynamics among the output features of R-GCNs. The core composition of the LSTM unit includes 
6 an input gate , a forget gate , an output gate , and a memory cell . Assuming  denotes 𝑖𝑡 𝑓𝑡 𝑜𝑡 𝑐𝑡 𝑥𝑡

7 the input vector, the calculation process of the LSTM unit is described below. 
𝒊𝑡 = 𝜎(𝒙𝑡𝐖𝑥𝑖 + 𝒉𝑡 ― 1𝐖ℎ𝑖 + 𝒃𝑖) (8)

𝒇𝑡 = 𝜎(𝒙𝑡𝐖𝑥𝑓 + 𝒉𝑡 ― 1𝐖ℎ𝑓 + 𝒃𝑓) (9)
𝒐𝑡 = 𝜎(𝒙𝑡𝐖𝑥𝑜 + 𝒉𝑡 ― 1𝐖ℎ𝑜 + 𝒃𝑜) (10)

𝒄𝑡 = tanh (𝒙𝑡𝐖𝑥𝑐 + 𝒉𝑡 ― 1𝐖ℎ𝑐 + 𝒃𝑐) (11)
𝒄𝑡 = 𝒇𝑡 ⊙ 𝒄𝑡 ― 1 + 𝒊𝑡 ⊙ 𝒄𝑡 (12)

𝒉𝑡 = 𝒐𝑡 ⊙ tanh(𝒄𝑡) (13)
8 Here,  and  represent the weight matrices and bias, respectively. In addition,  is the 𝐖 𝒃 ⊙
9 elementwise product operation, and  represents the sigmoid activation function. 𝜎( ⋅ )

10 4.5.4 SARGCN block

11 Figure 3 indicates that the proposed SARGCN model consists of several stacked SARGCN 
12 blocks. Relying on the description of R-GCN, feature split operation, and LSTM, we introduce the 
13 SARGCN block in detail in this subsection (shown in Figure 7). Compared with the naive split-
14 attention mechanism in ResNeSt, we replace the convolution operation with R-GCN and utilize 
15 LSTM to explore the temporal dynamics among groups. 
16 As described in Section 4.1,  and  denote the input features of the SARGCN model. Taking I𝑡 O𝑡

17 the first SARGCN block as an example, its output features  can be computed by the following 𝐕
18 equations. Here, Equation 14 denotes the feature split process, and Equation 15 represents the R-
19 GCN operation. Equations 17-21 present the split-attention mechanism applied to the output 
20 features of R-GCNs. Finally, a residual structure (described in Equation 22) is employed to enhance 
21 the stability and improve the convergence speed in the training process. 
22 In Equation 19,  represents two stacked dense layers with ReLU as the activation function. 𝜉𝑐( ⋅ )
23 And  shown in Equation 22 is a learnable weight matrix that aims to transfer the dimension of W𝐹
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1 input features  to be equal to that of . 𝐅 𝐕

Figure 7 The detailed description of the SARGCN block
2 According to Equations 14-22, the proposed SARGCN block has a solid capability to explore the 
3 spatiotemporal dependencies by integrating R-GCN, split-attention mechanism, and LSTM. 
4 Specifically, R-GCN can capture the spatial correlation on the established knowledge graph and 
5 explore the interactions between stations with different semantic types. The split-attention 
6 mechanism can assign traffic significance to the deep learning model and effectively mine the 
7 temporal dynamics and dependencies between inflow and outflow. Moreover, since passenger flow 
8 data have typical time-series characteristics, LSTM is employed to enhance the capability of 
9 SARGCN to handle this temporal correlation. 

𝐅 = split(I𝑡,O𝑡) = {𝐅1
1,…,𝐅𝐶

1;…;𝐅1
𝑆,…,𝐅𝐶

𝑆} (14)
𝐔𝑐

𝑠 = RGCN𝑐
𝑠(𝐅𝑐

𝑠) (15)
𝐔 = LSTM(𝐔) = {𝐔1

1,…,𝐔𝐶
1;…;𝐔1

𝑆,…,𝐔𝐶
𝑆} (16)

𝐔𝑠 =
𝐶

∑
𝑐 = 1

𝐔𝑐
𝑠 (17)

𝐒𝑠 = average_pooling(𝑈𝑠) =
1
𝑁

𝑁
∑

𝑛 = 1
𝐔𝑠(𝑛) (18)

𝑎𝑐
𝑠 =

exp(𝜉𝑐(𝐒𝑠))

∑𝐶

𝑗 = 1
exp(𝜉𝑗(𝐒𝑠))

(19)

𝐕𝑠 =
𝐶

∑
𝑐 = 1

(𝑎𝑐
𝑠 ⋅ 𝐔𝑐

𝑠) (20)

𝐕 = concat(𝐕1,𝐕2,…,𝐕𝑆) (21)
𝐕 = W𝑉𝐕 + W𝐹𝐅 (22)

10 The proposed SARGCN model is a modular design by stacking SARGCN blocks. This modular 
11 design idea makes the network structure relatively compact and convenient for building complex 
12 and deep models. In this way, the model structure can be modified easily by changing the number 
13 of groups (including split groups and cardinal groups) and the output dimension of R-GCN. 
14 Compared with the naive R-GCN model, the split-attention mechanism can also help SARGCN 
15 reduce model parameters and construct lightweight models. 

16 5. Experiment
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1 5.1 Evaluation metrics

2 In this study, three metrics are employed to evaluate prediction performance, including the root 
3 mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error 
4 (MAPE). The definitions of these three metrics are introduced in the following equations. Here,  N
5 denotes the number of metro stations, and  presents the number of testing samples. Meanwhile, 𝑛
6  can represent both the ground-truth inflow and outflow, and  denotes the corresponding 𝑦 𝑦
7 predicted values. 

RMSE =
1

nN

N

∑
𝑖 = 1

n

∑
𝑗 = 1

(𝑦𝑖
𝑗 ― 𝑦𝑖

𝑗)
2 (23)

MAE =
1

nN

N

∑
𝑖 = 1

n

∑
𝑗 = 1

|𝑦𝑖
𝑗 ― 𝑦𝑖

𝑗| (24)

MAPE =
1

nN

N

∑
𝑖 = 1

n

∑
𝑗 = 1

 |
𝑦𝑖

𝑗 ― 𝑦𝑖
𝑗

𝑦𝑖
𝑗

| × 100% (25)

8 However, many studies have demonstrated that MAPE always faces significant challenges when 
9 encountering zero or close-to-zeros ground truth (Kim & Kim, 2016). When the metro system begins 

10 to operate in the early morning, no passengers exit at many stations, thus leading to zero data in 
11 outflows. Therefore, we employ MAPE@10 (Zhang et al., 2019) to address this problem. 
12 Specifically, we calculate MAPE on metro stations with the top 10% largest passenger flow. 

(a) Shenzhen city (b) Hangzhou city
Figure 8 The spatial distribution of metro stations with different semantic types

13 5.2 Experimental setting

14 5.2.1 Network construction method

15 By using the construction method described in Section 4.2, we can transfer the employed 
16 Shenzhen and Hangzhou metro systems into knowledge graphs, which are shown in Figure 8. 
17 According to Algorithm 1, the network construction method has two critical parameters, named  K
18 and , which significantly impact network density. In this study, we set the value of  as 0.1 and 𝜆 𝜆
19 assign the value of  to these two datasets as 7 and 13, respectively. Finally, the Shenzhen dataset K
20 contains 166 nodes and 832 edges (including 166 self-loop edges). And in the Hangzhou dataset, 
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1 we obtain 80 nodes and 715 edges (including 80 self-loop edges). 

2 5.2.2 SARGCN model

3 The implementation details of the proposed SARGCN model on the Shenzhen and Hangzhou 
4 metro systems are described as follows. 
5 (1) Shenzhen metro system. As mentioned in Section 3.1, we aggregate both inflow and outflow 
6 into 10 minutes and finally obtain 3,162 records for each station. These passenger flow records are 
7 divided into a training set, a validation set, and a testing set according to a splitting rate of 70%: 
8 10%: 20%. We employ the previous 12 time-steps inflow and outflow to predict network-scale 
9 ridership at the next 1-step, 4-step, 7-step, and 10-step, respectively. Two stacked SARGCN blocks 

10 are utilized to compose the SARGCN model. The hidden dimension of the proposed SARGCN 
11 model is set to be the same as the number of stations, i.e., . Considering the actual traffic N = 166
12 significance, we set the number of groups in SARGCN as  and . That is, we first divide 𝑆 = 2 𝐶 = 3
13 passenger flow into two split groups (i.e., inflow and outflow), and each split group is further divided 
14 into three cardinal groups (i.e., short-scale flow, middle-scale flow, and long-scale flow). 
15 Meanwhile, we apply a grid search strategy on {16,32,48,64,96} to search for the optimal values of 
16 the hidden dimension of . Finally, the prediction accuracy reaches the peak at 48, so we employ it 𝜉
17 as the optimal hyperparameter. 
18 (2) Hangzhou metro system. Since this dataset is obtained from the open-source data (Liu et al., 
19 2020), we follow all the settings of the original dataset. That is, we utilize the inflow and outflow 
20 of the previous 4 intervals to simultaneously predict the next 4 steps. Furthermore, a two-layer 
21 SARGCN model is employed to conduct passenger flow prediction in the Hangzhou metro network, 
22 and the hidden dimension is set as 224. After the grid search strategy, the hidden unit number of  𝜉
23 is set as 96. Since the horizontal of historical passenger flows is 4, we set the number of groups as 
24  and . 𝑆 = 2 𝐶 = 2
25 Before inputting to the deep learning model, we first normalize these two datasets. The batch size 
26 of the mini-batch training strategy is set to 40 for Shenzhen and 32 (the same as in (Liu et al., 2020)) 
27 for Hangzhou, and the Adam optimizer (Kingma & Ba, 2014) with a learning rate of 0.001 is applied 
28 for model training. All the parameters are initialized by Xavier initialization (Glorot & Bengio, 
29 2010). The number of training epochs is set to 300, and an early-stop strategy is adopted on the 
30 validation set to avoid overfitting.

31 5.3 Performance comparison

32 5.3.1 Shenzhen metro system

33 This subsection first introduces and employs 11 widely-used traffic state prediction models to be 
34 compared with the proposed SARGCN model on the Shenzhen metro system, including traditional 
35 statistical models, machine learning models, shallow deep learning models, and novel graph neural 
36 networks. The brief descriptions of the selected baselines are summarized below. 
37 (1) HA. The historical average (HA) method utilizes the average passenger flows of each period 
38 to represent its future values. For instance, the future passenger flow at 7:00 am-7:10 am on the 
39 testing set is calculated by the average passenger flows during 7:00 am-7:10 am on the training set. 
40 We utilize the prediction performance of 1-step to denote that of multistep. 
41 (2) MLP. The multilayer perceptron (MLP) is a basic machine learning model, and neither 
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1 temporal correlation nor spatial dependence is involved in this method. For each metro station, we 
2 employ a 3-layer MLP, including an input layer, a hidden layer with ReLU as the activation function, 
3 and an output layer to predict short-term passenger flow. 
4 (3) LSTM (Ma et al., 2015). Long short-term memory (LSTM) can effectively capture the 
5 temporal dynamics of metro passenger flow, but the spatial dependence is also overlooked. 
6 (4) GRU. Gated recurrent unit (GRU) is a variant of LSTM. Similarly, only the temporal 
7 correlation is used in this model. 
8 (5) GCN. Considering the prediction performance, instead of the original GCN framework 
9 proposed in (Kipf & Welling, 2016), we employ the R-GCN model without node types and edge 

10 relationships (i.e., without a knowledge graph) as GCN to forecast short-term passenger flows. 
11 (6) GAT (Velicković et al., 2017). The graph attention network (GAT) can explore spatial 
12 dependence by the self-attention and multi-head attention mechanisms, and it has advantages in 
13 directed graphs and inductive learning tasks. However, only spatial dependence is involved in the 
14 naive GAT model. 
15 (7) STGCN (Yu et al., 2018). In this model, the gated CNN is employed to capture the temporal 
16 dynamics and combined with GCN to formulate the spatiotemporal graph convolutional network 
17 (STGCN). 
18 (8) Graph-WaveNet (Wu et al., 2019). In Graph-WaveNet, a novel adaptive correlation matrix 
19 and stacked temporal convolutional layers are employed to handle spatial dependence and temporal 
20 dynamics, respectively. 
21 (9) T-GCN (Zhao et al., 2020a). This method utilizes GRU to capture the time-varying 
22 characteristics of traffic data and applies GCN to explore the spatial correlation. 
23 (10) TGC-LSTM (Cui et al., 2020). In this method, a traffic graph convolution operation based 
24 on GCN is proposed and stacked with LSTM. 
25 (11) PVCGN (Liu et al., 2020). This model constructs three topological graphs (including a 
26 physical graph, a similarity graph, and a correlation graph) to explore the comprehensive spatial 
27 correlations in the metro system. Then, a physical-virtual collaboration graph network (PVCGN) is 
28 proposed to predict network-scale passenger flow. 
29 All the experiments are conducted on a Windows 10 workstation (CPU: Intel Core (TM) i9-
30 9900K @ 3.6GHz, RAM: 32GB random-access memory, GPU: NVIDIA GTX 2080Ti with 11GB 
31 memory) with Python 3.6.10. We implement the proposed SARGCN model with an open-source 
32 graph learning framework, i.e., deep graph library (DGL) (Wang et al., 2019), and utilize MXNet 
33 (Chen et al., 2015) as the backend. 
34 Table 3 to Table 5 show the quantitative comparisons between SARGCN and baselines in the 
35 Shenzhen metro system. The prediction performances shown in Table 3 consist of the whole 
36 ridership, so we also separate the prediction metrics of inflow and outflow into Table 4 and Table 
37 5, respectively. Here, the performances shown in Table 4 and Table 5 correspond to the metrics in 
38 Table 3. Furthermore, we illustrate the ground-truth passenger flow and the predicted values of three 
39 typical stations in Figure 9. 



18

1 These tables show that in terms of prediction accuracy on both the 1-step and multistep, SARGCN 
2 always expresses superior performances to the baselines. For instance, compared with the most 
3 accurate baseline in Table 3, SARGCN improves the RMSE by 10.38%, 12.28%, 4.54%, and 3.35% 
4 on these four steps, respectively. These results demonstrate that the proposed SARGCN model has 
5 a powerful capability to explore the spatiotemporal dependencies on the metro system. A 
6 comparison of the prediction results and ground truth (shown in Figure 9) shows that the time-
7 varying patterns of passenger flow vary from station to station. And the proposed SARGCN model 
8 is effective in capturing these temporal dynamics in different time-varying patterns. Furthermore, 
9 compared with the baselines without spatial correlations (i.e., HA, MLP, LSTM, and GRU), almost 

10 all the GNN-based models perform higher accuracies in the 1-step prediction task and stabilities in 
11 multistep prediction tasks. This phenomenon further proves the importance of spatial correlations 
12 in metro passenger flow prediction. In summary, these comparisons can indicate the superior 

Table 3 Quantitative comparison of the whole ridership in Shenzhen metro system
1-step 4-step 7-step 10-step

RMSE MAE MAPE@10 RMSE MAE MAPE@10 RMSE MAE MAPE@10 RMSE MAE MAPE@10

HA 47.32 22.62 30.07% 47.32 22.62 30.07% 47.32 22.62 30.07% 47.32 22.62 30.07%

MLP 23.52 14.03 16.70% 34.20 19.30 25.74% 47.48 25.19 33.41% 59.87 30.61 38.78%

LSTM 23.73 13.82 18.11% 31.22 17.16 25.98% 40.80 20.78 35.07% 48.47 23.76 36.73%

GRU 23.93 14.07 19.24% 33.84 18.19 32.37% 45.45 22.46 47.16% 50.09 24.98 39.98%

GCN 23.35 13.80 15.57% 30.49 17.63 18.10% 42.63 24.36 26.37% 50.22 26.99 25.66%

GAT 20.24 12.41 21.38% 26.27 15.52 26.51% 33.03 18.85 31.62% 39.81 21.99 36.44%

STGCN 25.25 14.21 15.29% 34.98 18.80 19.51% 50.73 24.97 28.68% 67.79 32.07 41.65%

Graph-WaveNet 20. 63 12.11 14.16% 24.47 13.29 15.42% 30.46 14.64 17.13% 32.09 15.49 18.84%

T-GCN 23.41 14.09 16.05% 28.11 16.32 19.40% 30.28 17.24 20.10% 32.18 18.75 23.16%

TGC-LSTM 22.59 14.22 18.56% 24.55 15.00 19.47% 28.33 16.32 23.08% 29.86 16.39 20.80%

PVCGN 22.63 12.76 14.27% 23.77 13.39 15.37% 24.46 13.64 16.39% 25.36 13.99 17.39%

SARGCN 18.14 11.24 13.49% 20.85 12.52 15.10% 23.35 13.34 15.46% 24.51 14.22 17.34%

Table 4 Quantitative comparison of inflow in Shenzhen metro system
1-step 4-step 7-step 10-step

RMSE MAE MAPE@10 RMSE MAE MAPE@10 RMSE MAE MAPE@10 RMSE MAE MAPE@10

HA 46.32 22.77 29.86% 46.32 22.77 29.86% 46.32 22.77 29.86% 46.32 22.77 29.86%

MLP 21.50 13.17 16.65% 34.47 19.56 28.54% 48.26 25.74 35.12% 60.17 30.99 39.72%

LSTM 21.36 12.82 18.73% 30.59 16.75 28.43% 40.77 20.61 33.83% 48.64 23.65 35.04%

GRU 21.48 13.01 19.77% 32.85 17.69 33.48% 44.51 22.10 43.77% 49.71 24.72 36.68%

GCN 21.37 12.79 15.05% 31.25 17.52 18.82% 44.37 24.69 27.73% 52.74 27.52 27.18%

GAT 18.55 11.49 14.03% 26.47 15.22 18.06% 34.77 19.28 20.65% 41.90 22.47 23.55%

STGCN 21.39 12.90 14.74% 33.35 17.64 19.01% 49.62 24.06 30.32% 69.17 31.94 45.74%

Graph-WaveNet 18.65 10.98 13.60% 22.99 12.48 14.90% 27.70 13.87 17.16% 28.76 14.77 19.36%

T-GCN 19.97 12.63 16.05% 26.70 15.58 19.40% 27.52 15.92 20.10% 31.44 18.29 23.16%

TGC-LSTM 21.52 13.79 18.98% 24.24 14.57 20.62% 28.71 15.91 23.94% 29.64 15.79 21.31%

PVCGN 20.99 11.74 13.75% 23.72 12.86 15.31% 24.82 13.21 16.39% 26.02 13.60 17.14%

SARGCN 16.46 10.40 13.27% 20.58 12.17 15.98% 23.49 12.79 15.15% 24.35 13.84 17.33%
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1 performance of SARGCN on the Shenzhen metro dataset. 

2 5.3.2 Hangzhou metro system

3 To evaluate the prediction performance of SARGCN model on the Hangzhou metro system, we 
4 directly introduce the experimental results in the previous study (Liu et al., 2020). The prediction 
5 performance in the Hangzhou metro system is summarized in Table 6. In the baselines, there are 
6 three traditional time series models, three general deep learning models, and six recently-proposed 
7 graph networks (i.e., ASTGCN (Guo et al., 2019), STG2Seq (Bai et al., 2019a), DCRNN (Li et al., 

Table 5 Quantitative comparison of outflow in Shenzhen metro system
1-step 4-step 7-step 10-step

RMSE MAE MAPE@10 RMSE MAE MAPE@10 RMSE MAE MAPE@10 RMSE MAE MAPE@10

HA 48.30 22.48 30.29% 48.30 22.48 30.29% 48.30 22.48 30.29% 48.30 22.48 30.29%

MLP 25.35 14.88 16.75% 33.92 19.05 22.88% 46.69 24.64 31.66% 59.56 30.23 37.82%

LSTM 25.87 14.82 17.48% 31.82 17.56 23.47% 40.83 20.94 36.34% 48.31 23.87 38.45%

GRU 26.13 15.11 18.68% 34.79 18.67 31.23% 46.37 22.82 50.63% 50.47 25.23 43.37%

GCN 25.17 14.81 16.10% 29.72 17.75 17.36% 40.83 24.03 24.98% 47.58 26.45 24.10%

GAT 21.79 13.31 15.01% 26.07 15.82 16.82% 31.21 18.42 19.16% 37.62 21.51 20.26%

STGCN 26.78 15.51 15.86% 36.53 19.94 20.03% 51.81 25.88 27.00% 66.38 32.19 37.47%

Graph-WaveNet 22.42 13.23 14.74% 25.84 14.09 15.96% 32.96 15.39 17.11% 35.08 16.21 18.31%

T-GCN 26.38 15.53 16.32% 29.43 17.05 17.96% 32.79 18.55 20.37% 32.90 19.21 20.76%

TGC-LSTM 23.61 14.65 18.13% 24.85 15.43 18.29% 27.95 16.73 22.21% 30.08 16.99 20.28%

PVCGN 24.15 13.77 14.81% 23.83 13.92 15.44% 24.03 14.06 16.38% 24.69 14.37 17.65%

SARGCN 19.66 12.07 13.72% 21.10 12.88 14.19% 23.22 13.89 15.78% 24.67 14.59 17.34%

(a) inflow of Liuyue Station (b) inflow of Chegongmiao Station (c) inflow of Jingtian Station

(d) outflow of Liuyue Station (e) outflow of Chegongmiao Station (f) outflow of Jingtian Station

Figure 9 Comparison of prediction results and ground truth based on SARGCN model
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1 2017a), GCRNN, Graph-WaveNet (Wu et al., 2019), PVCGN (Liu et al., 2020)). From this table, 
2 we can find that the proposed SARGCN model can achieve the lowest RMSE and MAE at 15-min 
3 among all the state-of-the-art methods. Although the MAE of PVCGN is lower than SARGCN with 
4 the prediction horizontal increases, our SARGCN model always shows superior performance on 
5 RMSE. Meanwhile, compared with the MAE of SARGCN, PVCGN reduces 0.55% (30-min), 
6 0.86% (45-min), and 1.42% (60-min). However, compared with SARGCN, PVCGN increases the 
7 RMSE by 3.99%, 3.91%, and 2.45% for 30-min, 45-min, and 60-min, respectively. According to 
8 these experimental results, the improvement of SARGCN in RMSE is higher than the decrease in 
9 MAE. Hence, these comparisons indicate that the proposed SARGCN model can achieve higher 

10 prediction accuracy. However, since our SARGCN model lacks the Seq2Seq structure (Sutskever 
11 et al., 2014), its prediction performance will decrease to a certain extent in long-scale prediction. 
12 Table 6 Quantitative comparison of the whole ridership in Hangzhou metro system

15 min 30 min 45 min 60 min

RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

HA 64.19 36.37 19.14% 64.10 36.37 19.31% 63.92 36.23 19.57% 63.72 35.99 20.01%

RF 53.52 32.19 18.34% 64.54 38.00 21.46% 80.06 45.78 26.51% 94.29 52.95 37.12%

GBDT 51.50 30.88 17.60% 61.94 36.48 20.49% 76.70 44.12 25.75% 91.21 51.l0 38.10%

MLP 46.55 26.57 16.26% 47.96 27.44 17.10% 50.66 28.79 19.01% 54.62 30.52 22.56%

LSTM 45.30 25.76 14.91% 45.52 26.01 15.10% 46.30 26.38 15.40% 47.53 26.76 16.34%

GRU 45.10 25.69 15.13% 45.26 25.93 15.35% 46.13 26.36 15.79% 47.69 26.98 17.20%

ASTGCN 46.19 27.34 15.05% 46.16 27.74 15.56% 46.79 28.20 16.48% 49.70 28.85 17.75%

STG2Seq 39.52 23.80 17.09% 40.72 24.72 19.51% 43.36 25.98 23.59% 46.05 26.50 27.93%

DCRNN 40.39 23.76 14.00% 42.57 25.22 14.99% 46.26 26.97 16.19% 49.35 28.47 18.16%

GCRNN 40.24 23.84 14.08% 41.95 25.14 14.86% 45.53 26.82 16.05% 50.28 28.75 17.89%

Graph-WaveNet 40.78 24.07 14.27% 42.80 25.48 15.23% 45.84 27.15 17.34% 49.89 29.14 19.37%

PVCGN 37.76 22.68 13.70% 39.34 23.33 13.81% 40.95 24.22 14.45% 42.61 24.93 15.49%

SARGCN 36.22 22.48 13.94% 37.83 23.46 14.99% 39.41 24.43 16.25% 41.59 25.29 17.60%

13 In addition to the prediction performance, we further compare the computational costs between 
14 SARGCN and PVCGN on the Hangzhou dataset in Table 7. These comparisons are conducted on 
15 the same workstation and batch size to ensure fairness. This table indicates that SARGCN can 
16 reduce computational costs significantly. In particular, the number of parameters in SARGCN is 
17 only 3.51% of those in PVCGN. This phenomenon demonstrates that the proposed SARGCN model 
18 is much lighter than the state-of-the-art baseline. Furthermore, concerning the computational 
19 efficiency, SARGCN is just 49.1% of PVCGN in the average training time of each epoch. Hence, 
20 we can conclude that SARGCN can reduce training costs in terms of both the number of parameters 
21 and training efficiency. Therefore, it is more friendly and suitable for real-world applications in 
22 metro management. 
23 Table 7 Computational efficiency comparisons on the Hangzhou metro dataset

PVCGN SARGCN

Parameter amount 3.76 × 107 1.32 × 106

GPU occupation 7655 MiB 4859 MiB
Average training time 22.88 s/epoch 11.23 s/epoch
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1 5.4 Error distribution analysis

2 The evaluation metrics shown in the above tables measure the prediction performance in terms 
3 of average errors. To further validate the prediction accuracy, it is also essential to explore the error 
4 distributions of each data point and station. Figure 10 expresses the actual distribution of ground 
5 truth and prediction results of both inflow and outflow. As shown in these figures, the slopes of the 
6 fitted lines are close to 1, thus indicating that the predicted values can effectively match the ground 
7 truth. Although there are still errors, these data points are closely fitted and evenly distributed on 
8 both sides of the fitted line. Meanwhile, the heatmaps show that the metro passenger flow is 
9 concentrated at a lower level, and the quantity of data points decreases significantly with increasing 

10 passenger flow. Overall, regardless of whether the passenger flow is large or small, SARGCN can 
11 achieve reliable and accurate predictions. 
12 In addition, we further explore the error distributions among all the metro stations. Different travel 
13 patterns of each station may lead to different prediction performances. Thus, we employ RMSE and 
14 MAE of each station to illustrate boxplots in Figure 11(a) and Figure 11(b), respectively. These two 
15 figures indicate that there are fewer abnormal data in SARGCN, and its error indicators of boxplot 
16 are generally lower than other models. This phenomenon reveals that SARGCN can always perform 
17 more accurately on each metro station and reduce outliers. 

(a) inflow (b) outflow
Figure 10 Scatters and fitting of prediction results and ground truth of SARGCN

18

(a) RMSE (b) MAE
Figure 11 Boxplot of RMSE and MAE for all the GNN-based models on the Shenzhen metro 

system
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1 5.5 Ablation experiments

2 According to the model structure, R-GCN (or the knowledge graph) and split-attention 
3 mechanism are the vital components of the SARGCN model. In this subsection, we further conduct 
4 an ablation experiment to evaluate the importance of these two components. 
5 The prediction performances of GCN, R-GCN, SAGCN (i.e., split-attention graph convolutional 
6 network), and SARGCN model in the Shenzhen metro system are illustrated in Figure 12, and 
7 differences among these models are displayed in Table 8. From the prediction results shown in the 
8 following figures, several conclusions can be summarized. 
9 Table 8 Differences of models in ablation experiment

Category Knowledge graph Split-attention

GCN × ×
R-GCN √ ×
SAGCN × √
SARGCN √ √

10

(a) RMSE (b) MAE
Figure 12 Ablation experiment results of SARGCN on the Shenzhen metro system

11 (1) It is evident that R-GCN and SARGCN significantly outperform GCN and SAGCN, 
12 respectively. For the whole ridership, the RMSE of R-GCN decreases by 17.15% compared with 
13 GCN on the 1-step prediction task, and SARGCN achieves a 15.10% improvement than SAGCN. 
14 Therefore, we can conclude that the knowledge graph plays a vital role in metro passenger flow 
15 prediction and dramatically improves prediction performance. 
16 (2) From the prediction comparison of R-GCN and SARGCN on the whole ridership, we can find 
17 that RMSE and MAE decrease by 6.23% and 5.44%, respectively. And from the comparison 
18 between GCN and SAGCN, the improvement reaches 8.51% and 5.67%. Meanwhile, comparing 
19 SARGCN and R-GCN models on the inflow and outflow, the evaluation metrics express that 
20 SARGCN can achieve improvement on both inflow and outflow. This is because the split-attention 
21 mechanism can explore both the temporal dynamics and the dependencies between inflow and 
22 outflow. Many studies note that the group convolution operation can reduce the number of 
23 parameters. Although we replace all the convolution operations in the split-attention mechanism 
24 with R-GCN operation, SARGCN can also achieve parameters reducing by 11.29% (from 829,006 
25 in R-GCN to 735,372 in SARGCN), thereby leading to a lightweight model. 
26 (3) Since the prediction accuracy of SARGCN further outperforms its components, the results of 
27 the ablation experiment also indicate that the combination of knowledge graph and split-attention 
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1 mechanism is helpful in improving prediction performance. 
2 Furthermore, Figure 13 illustrates the training loss and validation loss during training on the 
3 Shenzhen metro system. Because we apply the early-stop strategy on these deep learning models to 
4 avoid overfitting, there is a difference in the epochs when they stop training. Since GCN and 
5 SAGCN overlook the information on the established knowledge graph, their MSEs are always much 
6 higher than that of R-GCN and SARGCN. For the models with the split-attention mechanism (i.e., 
7 SAGCN and SARGCN), although their convergence speeds are slower than other models, they can 
8 avoid precocious convergence effectively. Hence, they can search for more appropriate parameters 
9 to obtain higher accuracies than GCN and R-GCN. According to the principles of SAGCN and 

10 SARGCN, the main reason for precocious convergence is that there are several parallel models in 
11 the split-attention mechanism. The prediction performance of SARGCN and SAGCN not only relies 
12 on the prediction results of each parallel model but also depends on the aggregation of these parallel 
13 models. Therefore, searching for the appropriate parameters for each model and the aggregators will 
14 increase the training time, but this increased training time cost can improve prediction performance. 

(a) training loss (b) validation loss
Figure 13 Performance comparison of SARGCN and its corresponding models at different 

training epochs

15 5.6 Graph construction method analysis 

16 To validate the effectiveness of the graph construction method, we compare the prediction 
17 performance of the physical metro network and constructed directed graph of the Shenzhen metro 
18 system. The comparison results are displayed in Figure 14. Here, both of these graphs are 
19 transformed to knowledge graphs. To distinguish them, we name these two graphs as the physical 
20 network and constructed graph, respectively. The results show that the SARGCN based on the 
21 constructed graph consistently outperforms that on the physical network. Concerning the 
22 constructed graph, the RMSE and MAE of 1-step prediction are reduced by 5.80% and 6.42%, 
23 respectively. Moreover, Figure 15(a) and Figure 15(b) show that most metro stations can achieve 
24 more accurate prediction performance on the constructed graph. Specifically, the percentages of 
25 stations with a reduced RMSE and MAE are 88.6% and 95.2%, respectively. 
26 Besides, we also explore the distributions of the reduced prediction errors in Figure 15(c) and 
27 Figure 15(d). According to these figures, the reduced prediction errors similarly follow the normal 
28 distribution, and the average improvement is 1.07 for RMSE and 0.77 for MAE. These 
29 improvements suggest that the constructed graph has a more powerful capability to capture the 
30 spatial dependence of the metro system, and combining it with the proposed SARGCN model is an 
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1 appropriate direction to improve metro passenger flow prediction performance. 

(a) RMSE (b) MAE
Figure 14 Performance comparison of SARGCN on the constructed graph and physical network 

in the Shenzhen metro system
2

(a) spatial distributions of metro stations with 
reduced RMSE

(b) spatial distributions of metro stations with 
reduced MAE

(c) histogram distribution of reduced RMSE (d) histogram distribution of reduced MAE
Figure 15 Distribution of reduced prediction errors by the metro graph construction method in 

the Shenzhen metro system
3 Moreover, we further analyze the OD passenger flow distributions on these two graphs, and the 
4 results are illustrated in Figure 16. In this figure, the OD passenger flows on the self-loop edges are 
5 not involved. It is evident that OD passenger flows on the connected edges of the physical network 
6 are significantly lower than those of the constructed graph. In other words, there are more frequent 
7 passenger flow interactions between the adjacent stations on the constructed graph, while the 
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1 physical network always ignores these features. Therefore, since the constructed graph can explore 
2 this dependence from travel behaviors, it can obtain higher prediction accuracy.

Figure 16 OD passenger flow distribution of the connected edges on the constructed graph and 
physical network in the Shenzhen metro system

3 5.7 Knowledge graph analysis

4 The prediction performance comparisons in Section 5.5 demonstrate that the established 
5 knowledge graph positively impacts prediction accuracies. In this subsection, we further explore the 
6 properties of the knowledge graph. 

(a) probability density of MADT (b) probability density of RMSE
Figure 17 Traffic features distributions between different types of stations in the Shenzhen 

metro system
7 In the established knowledge graph, the proportion of metro stations with different semantic types 
8 is 24.7%: 15.7%: 22.9%: 10.8%: 25.9%. Among all the types, stations with type 1 (i.e., resident 
9 area) account for the largest proportion. Moreover, Figure 17(a) and Figure 17(b) illustrate the 

10 probability density distribution of monthly average day traffic (MADT) and RMSE under different 
11 semantic types. According to the MADT distribution, each type has its unique characteristics, and 
12 these differences can be effectively distinguished by the knowledge graph construction method. 
13 Meanwhile, an interesting finding is obtained from the probability density distribution of MADT 
14 and RMSE. For instance, the MADT distribution of type 5 is always lower than that of type 2. 
15 However, as the RMSE distribution comparison shows, the probability density of type 5 is much 
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1 higher than type 2 when RMSE is higher than 20. The reason may be that type 5 includes many 
2 transfer nodes with other modes of transportation (e.g., buses, railways, and airplanes). Hence, 
3 passenger flows at these stations mainly originate from other transportation modes. The imbalanced 
4 schedules of other transportation modes easily produce randomness and instabilities in metro 
5 passenger flows. Therefore, it brings significant challenges for accurate prediction, leading to higher 
6 prediction errors. This finding reveals that the knowledge graph can capture and distinguish the 
7 travel patterns of each station type to promote spatial correlation mining. 

8 6. Conclusion

9 This study proposes a deep learning framework named split-attention relational graph 
10 convolutional network (SARGCN) to address the network-scale metro passenger flow prediction. 
11 Unlike previous studies, which directly apply the physical metro network for GNNs, we develop a 
12 metro knowledge graph construction method to adapt the travel behavior. Specifically, the historical 
13 OD matrix is extracted and employed as the similarity measure to construct the metro topological 
14 graph. Then, we utilize the land-use features to represent the semantic types of each station, aiming 
15 to establish a knowledge graph based on the constructed directed graph. To further explore the 
16 spatiotemporal dependencies on the established knowledge graph, we propose the SARGCN model, 
17 by integrating the R-GCN, split-attention mechanism, and LSTM. Validated on the Shenzhen and 
18 Hangzhou metro system, SARGCN expresses superiority compared to widely-used baselines and 
19 state-of-the-art methods. 
20 However, this study still has several limitations. For instance, various payment methods, such as 
21 smart cards and mobile payments, have been developed for metro systems in recent years. However, 
22 due to the barriers in research data collection, this study only extracts the smart card data for 
23 passenger flow analysis and prediction. Since passenger travel behavior may differ by payment 
24 method, fully considering these differences might enhance spatiotemporal correlation analysis. 
25 Moreover, many studies demonstrate that external information, such as weather and special events 
26 (Xue et al., 2022), also impacts the metro passenger flow, which is not involved in this study. 
27 According to the limitations and challenges of this study, the following suggestions might be 
28 interesting directions for future work. 
29 (1) Metro is a critical component in the urban transit system, and its passengers always source 
30 from other transportation modes, e.g., buses, bike-sharing, etc. So, introducing the real-time 
31 passenger distributions of other transportation modes may improve prediction performance. 
32 (2) In addition to predicting the inflow and outflow, OD passenger flow prediction (Dai et al., 
33 2018; Hussain et al., 2021; Zhang et al., 2021) is also a hot topic in this field. From the essence of 
34 these two passenger flows, the former denotes the number of passengers entering and exiting the 
35 metro system, and the latter reflects the passenger flow direction and evolution process within this 
36 system. Future works can further explore the dependence between these two flows and integrate 
37 these two tasks to improve prediction performance. 
38 (3) An increasing number of researchers have paid attention to inductive learning tasks in traffic 
39 prediction (Wu et al., 2020). Graph neural networks with inductive learning ability can be applied 
40 to different topology networks and achieve acceptable performance. Since metros are rapidly 
41 constructed and developed, a robust model with strong generalization to different topological graphs 
42 is needed. Thus, inductive learning has excellent potential in metro passenger flow prediction. 
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1 Appendix

2 The important abbreviations used in this study is summarized as follows. 
3 Table 9 The important abbreviations used in this paper

Abbreviations Description

GCN Graph convolutional network. 
GNN Graph neural network. 
LSTM Long short-term memory network. 
MADT Monthly average day traffic of passenger flow. 
MAE Mean absolute error, mathematically expressed by Equation 24. 

MAPE@10
Mean absolute percentage error (MAPE) on metro stations with the top 
10% largest passenger flow. 

OD matrix Origin-destination (OD) matrix. 

POI
Point of interest data, which represents the land-use characteristics in the 
urban area. 

R-GCN Relational graph convolutional network. 
RMSE Root mean square error, mathematically expressed by Equation 23. 

SAGCN
Split-attention graph convolutional network, which use the GCN layer to 
replace the R-GCN layer in SARGCN. 

SARGCN
Split-attention relational graph convolutional network proposed by this 
study. 
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