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a b s t r a c t

Understanding the spatiotemporal characteristics of traffic congestion is the cornerstone
of generating traffic management and control strategies. Based on the large-scale taxi
trajectory data in Shenzhen, China, this study designs an effective framework to explore
the spatiotemporal patterns of traffic congestions. To bridge trajectory data with urban
road networks, we develop a two-stage map-matching method from the aspects of
distance and angle. Then, the free-flow speed of each road segment is extracted and
employed to identify traffic congestion. In this way, a novel complex network method,
named chronological network (chronnet), is utilized for traffic congestion modeling,
and we employ an overlapping community detection algorithm to identify region-
level bottlenecks. According to the network properties, we explore the influence scope
of traffic congestions and uncover the role of each road segment in the propagation
process. Meanwhile, community detection results indicate that there are typical local
clustering structures in traffic congestions, and each community also has its unique
traffic characteristics. Overall, these findings reveal that the complex network can
effectively mine the consecutive patterns of traffic congestion.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

How to alleviate traffic congestion is a consistent challenge that has puzzled traffic scholars and engineers for several
ecades. During these years, the intelligent transportation systems (ITS) have provided a new approach to address this
roblem. Based on emerging traffic collection devices, traffic managers can conduct timely analyses about traffic states
nd design corresponding control strategies. Nowadays, numerous novel traffic management technologies are applied to
eal-world traffic systems, such as information provision [1,2], signal optimization [3,4], congestion pricing [5,6], etc. These
pproaches have been demonstrated as effective countermeasures to relieve traffic congestion [7]. However, the urban
oad network consists of massive road segments, so it is impractical to implement traffic control on all road segments
n such a comprehensive environment. Therefore, it is essential to understand its spatiotemporal patterns and conduct
argeted countermeasures.

Existing studies on traffic congestion modeling can be classified into two categories, i.e., simulation-based models
nd data-driven methods. Here, the former focuses on understanding the microscopic characteristics of traffic congestion
rom simulation models, such as traffic flow theory, epidemic diseases, etc. Bando et al. [8] learned the dynamics of
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raffic flow as a collective motion problem, and then a simulation model was established to represent the motion of each
ehicle for traffic congestion modeling. Olmos et al. [9] utilized the cellular automaton model to represent the vehicle
ynamics and explored the collapse of urban traffic. Saberi et al. [10] employed the susceptible–infected–recovered (SIR)
odel to explain the dynamics of traffic congestion propagation and dissipation. With the development of connected
utomated vehicles (CAVs), researchers also turn to congestion modeling under the environment of CAVs and mixed
raffic flow [11]. However, simulation-based models always suffer limitations in computational costs and parameter
alibration [10]. Therefore, researchers and engineers gradually paid attention to data-driven methods for congestion
nalysis.
In traffic congestion analysis, the foundation of the data-driven method is the accurate traffic states. During these

ears, various traffic state collection devices are equipped in the urban road network, providing opportunities to solve
his problem from a data-driven perspective. Overall, two major traffic detectors are installed in urban road networks,
.e., fixed sensors and mobile devices. The former is mainly installed at fixed locations (e.g., intersections), and the latter
an be equipped on individual vehicles (i.e., taxis, buses, etc.). Based on the fixed detectors, several efforts have been made
n traffic congestion analysis [12,13]. However, limited by installation and maintenance costs, fixed detectors are always
parsely installed in urban road networks. Thus, only limited areas are covered in these methods [14]. According to the
dvantages of these two detectors, trajectory data from the mobile devices is more competent for traffic state analysis
nd travel patterns mining in large-scale road networks [10,15–21]. During these years, this type of data has won the
avor of researchers in traffic congestion analysis and propagation inference [22–24].

Due to the superiorities of trajectory data, several efforts are applied to traffic congestion analysis in urban road
etworks [25–27]. In traffic congestion identification, Wang et al. [28] designed a trajectory-based traffic congestion
isualization system, and it can help extract traffic states in a large-scale road network intuitively. Kan et al. [14] proposed
turn-level traffic congestion detection method based on taxi trajectory data. In this method, trajectories were classified

nto three intensities and employed to identify congestion events. Meanwhile, He et al. [29] also proposed a trajectory-
ased method to identify turn-level congestion without the digital map. And in traffic congestion analysis, Li et al. [30]
pplied the percolation theory to reveal the transition phenomenon in the urban road network. An et al. [31] aggregate
rajectory data into grid-based areas and calculated traffic states inside each grid to mine the recurrent evolution patterns
f urban congestions. Çolak et al. [32] mined travel patterns from mobile phone traces to analyze congested travel in urban
reas. They found that traffic congestion can be significantly alleviated by the centralized routing scheme with awareness
f social good.
However, although critical efforts have been put into this field, challenges and limitations still exist, such as:
(1) Essentially, traffic congestions can be regarded as spatiotemporal events with comprehensive characteristics, driven

y the operation law of the traffic system. In addition to the well-known local evolution characteristics, traffic congestions
lso exhibit similar variation patterns in distant road segments, e.g., parallel roads, areas with similar functions, etc.
evealing these spatiotemporal characteristics and global synchronizations are vital for network-scale traffic prediction
nd management, but these patterns are rarely involved in the current studies.
(2) Bottleneck identifications for urban road networks are always limited to segment-level. However, traffic congestion

lways produces at a certain point and spreads to nearby road segments. So, it is easy to cause regional congestion in the
rban road network. In recent years, traffic researchers and managers gradually focused on region-scale or network-scale
ontrol instead of the single point [33,34]. Therefore, besides identifying critical road segments, it is also an essential task
o identify urban areas prone to traffic congestion, i.e., region-level bottlenecks.

(3) Evolution patterns of traffic congestion still need further exploration. For instance, the roles of road segments in
he propagation process vary from road to road, such as alleviating or exacerbating congestion. Therefore, it is essential to
istinguish the role of each road segment. Meanwhile, learning the influence scope of traffic congestion is also necessary
or congestion management and control. Here, this scope can be understood from two aspects, including the influence of
istance and intensity. Further analysis of these characteristics can help traffic managers to formulate refined and effective
easures to relieve traffic pressure.
To solve these challenges, we propose a data-driven method based on complex networks to understand traffic

ongestions from large-scale trajectory data. Overall, the main contributions of this study can be summarized as three-fold.
1) We propose a framework to learn the spatiotemporal patterns and consecutive characteristics of traffic congestions
y the complex network theory, i.e., the chronological network (chronnet). (2) An overlapping community detection
lgorithm is employed to extract the propagation characteristics of traffic congestion and identify region-level bottlenecks.
3) Based on the structural properties analysis of the constructed complex network, we explore the spatiotemporal
atterns and analyze the influence scope of traffic congestion in the large-scale road network.
The rest part of this study is organized as follows. Section 2 introduces the traffic congestion modeling framework

n detail. The trajectory data involved in this study and congestion count analysis are described in Section 3. Section 4
xplores the structural properties and discusses the influence scope of traffic congestions from the constructed complex
etwork. Meanwhile, region-level bottlenecks are also identified in this section. Finally, we conclude this study and future
orks in Section 5.
2
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Fig. 1. Framework of spatiotemporal pattern analysis of traffic congestions.

2. Methodology

2.1. Framework

The framework of this study is illustrated in Fig. 1. From the overview of this figure, this work comprises four
critical parts, i.e., map-matching, traffic congestion identifying, complex network construction, and spatiotemporal pattern
analysis. First, we develop a two-stage map-matching method to bridge trajectory data with each road segment. After
that, the free-flow speed is defined and employed to identify segment-level traffic congestions. Based on the extracted
congestion matrix, a complex network construction method is adopted to transform consecutive traffic congestions into
a directed weighted graph. Finally, we employ an overlapping community detection method to identify the critical areas
in the complex network and conduct further analysis of influence scope based on network properties.

2.2. Map-matching

Map-matching aims to map GPS trajectories to road segments. Since this study focuses on identifying traffic congestions
at the segment level, map-matching becomes an essential foundation in this work. The map-matching method developed
by this study is described below.

Motivated by [35,36], the main idea of this method is to conduct map-matching from two aspects, i.e., distance analysis
and angle analysis. To accelerate the map-matching process in the large-scale road network, this study proposes an angle
analysis to replace the original transmission probability in the previous study [36]. For the distance analysis, supposing
pi denotes a GPS point, we first select the candidate road segment set c(pi) from the surrounding roads. In c(pi), all the
erpendicular distances to pi should be no more than 50 m. For each candidate road segment r ∈ c(pi), this method regards
he vertical foot between pi and r as the candidate projected point cpri . Then, as shown in Eq. (1), a normal distribution
ith µ = 0, σ = 20 is utilized to measure the likelihood between GPS point pi and the corresponding cpri . Here, d

r
i

enotes the distance between pi and cpri .

N(cpri ) =
1

√
2πσ

exp(−
(dri − µ)2

2σ 2 ) (1)

Afterward, we define another likelihood V (cpri → cpsi+1), named angle analysis, to represent whether the angle between
two consecutive candidate points cpri and cpsi+1 follows the corresponding angle from pi to pi+1. To achieve this goal, Eq. (2)
is employed to calculate the angle between GPS point pi and pi+1.

A(pi → pi+1) = arctan(
xpi+1 − xpi
ypi+1 − ypi

∗ cos ypi+1 ) (2)

Here, A (pi → pi+1) denote the angle from GPS point pi to pi+1 based on the great circle theory. Meanwhile, xpi and ypi
represent the longitude and latitude of pi, respectively. The angle between the consecutive candidate points cpri and cpsi+1
can also be calculated by this equation.

After that, the angle similarity V
(
cpri → cpsi+1

)
between the truly path (i.e., from pi to pi+1) and the candidate path

(i.e., from cpri to cpsi+1) is mathematically expressed by Eq. (3).

V (cpri → cpsi+1) = min(
A(pi → pi+1)

A(cpri → cpsi+1)
,
A(cpri → cpsi+1)
A(pi → pi+1)

) (3)

According to this equation, values of all the angle similarities are in [0, 1]. For each two consecutive GPS points, the
maller the deviation with the angle of road segments, the larger the angle probability. In this way, the final likelihood
3
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f the candidate projected points can be written in Eq. (4).

Fs(cpri → cpsi+1) = N(cpri ) · V (cpri → cpsi+1), i ∈ [1, n − 1] (4)

.3. Traffic congestion identification

Identifying traffic congestion is the foundation for congestion-based studies. According to the industry standard GA/T
15-2020 in China, traffic congestion can be determined by actual speed and limited maximal velocity. Based on the
esults of map-matching, we aggregate traffic speed of each road segment into 5-min period and employ it to identify
raffic congestion. However, collecting the limited velocities of all the road segments in a large-scale road network is
n extremely expensive task. Hence, the cumulative density distribution of traffic speed at each road segment can be
mployed to estimate its limited velocity [30]. Specifically, we utilize the 90th percentile of traffic speed at each segment
o represent the corresponding free-flow speed. In this way, as defined in Eq. (5), this study introduces a traffic congestion
ndex (TCI) to measure traffic congestion.

TCI[i, j] =
V [i, j]
FFS[j]

(5)

Hence, V [i, j] denotes the average traffic speed of road segment j at period i. Meanwhile, FFS and TCI stand the free-
flow speed vector and traffic congestion index matrix, respectively. This equation indicates that traffic congestion is more
severe if TCI is closer to 0. Finally, as shown in Eq. (6), a threshold is applied to determine traffic congestion based on
TCI. It means that if TCI of road segment j at time i is lower than the congestion threshold rc , then it will be regarded as
congestion at period i. And according to the industry standard GA/T 115-2020 in China, we assign the congestion threshold
as rc = 0.6.

C [i, j] =

{
1, TCI[i, j] < rc
0, TCI[i, j] ≥ rc

(6)

It is noted that the coverage of floating vehicles is relatively low, making the average speed matrix V significantly
sparse. According to Eqs. (5) and (6), if V [i, j] is 0, it will be regarded as congestion. Therefore, we design a correction
strategy to deal with this problem. For each period, road segments without vehicle passing are considered unobstructed
(i.e., TCI [i, j] = 1 and C [i, j] = 0).

2.4. Complex network construction

As described in Eq. (6), traffic congestions can be discretized according to the spatial and temporal dimensions. Thus, we
can regard them as special events with spatiotemporal characteristics. During these years, the complex network has been
treated as a powerful tool for spatiotemporal data mining [37,38]. The chronological network (chronnet) [39] is a novel
complex network for spatiotemporal event modeling. It has the advantages of convenient understanding and efficient
calculation. Therefore, we employ it to model the network-scale evolution patterns of traffic congestions. The original
chronnet needs to divide the study area into grid-based data, and each grid is regarded as a node in the complex network.
However, the topology information is overlooked in this method. Therefore, this study considers each road segment as a
node in chronnet instead of the grid-based area.

The principle of this complex network method is shown in Fig. 2. Here, we take traffic congestions at 10 road segments
in 4 continues periods as an example. To apply this method in the road network, we regard each road segment as a node
in the complex network. Hence, road segment with traffic congestion is marked as yellow in Fig. 2a, and nodes in Fig. 2b
denote the corresponding road segments with Fig. 2a. In Fig. 2b, the numbers on the edges denote the corresponding edge
weights wij. Meanwhile, since several road segments never suffer congestions in this example, they are not illustrated in
Fig. 2b (e.g., node 4 and 5). Overall, the detail definition of this method is summarized as follows. Supposing the road
segment xi is congested at period t , xt+1 represents the congestion road segments list at period t + 1. Then, this method
will add a directed edge from xi to each element of xt+1 if the distance between these two nodes is less than a given
threshold dmax. Therefore, the edge weight wij can denote the number of congestion propagation from node i to node j.

In the original chronnet [39], all the edges are undirected. However, considering the actual traffic significance, we use
the direct edges to represent the congestion propagation process among road segments. Therefore, a directed edge will
be added from xi to all the elements of xt+1. It is noted that the distance threshold dmax will limit the distance between
node pairs with consecutive congestions. To explore the consecutive patterns of traffic congestions from a global view,
following the setting in the original chronnet [39], we set the distance threshold dmax as +∞. Results in Section 4.4 can
demonstrate the reasonableness and validity of this setting. Meanwhile, since traffic congestion is time-varying, congestion
propagations will occur between the same pair of road segments at different periods. Also, under severe congestion, a
road segment may continue to congest during consecutive periods. So, multiplex edges and self-loops are allowed in this

network.

4



J. Zeng, Y. Xiong, F. Liu et al. Physica A 604 (2022) 127871

2

c
S

Fig. 2. Example of the chronnet construction method.

.5. Bottleneck identification

Community in the complex network denotes local node groups with strong connections. Based on the constructed
hronnet, we employ community detection to identify region-level bottlenecks in the large-scale urban road network.
upposing wij and wji denote edge weights between node i and node j, each weight can only represent the propagation

relationship in a specific direction. Therefore, to measure the local connection relationship effectively and reasonably,
the chronnet is transformed into an undirected graph to identify region-level bottlenecks. Specifically, all the directed
edges are replaced by undirected edges, and each weight on these undirected edges is calculated by the summation of
the corresponding directed weights (i.e., wij + wji).

Epasto et al. [40] proposed a scalable and flexible framework, named the ego-splitting method, to address the
overlapping community detection problem. They have demonstrated the effectiveness and accuracies of this method from
theoretical proof and experiment results. Considering the advantages of this method, we employ it to identify region-level
bottlenecks in this study. The detail calculation process is summarized in Fig. 3. Here, ego-net and persona (shown in
Fig. 3b and Fig. 3c) are the cores of this method, and they are employed as guidance for overlapping community detection.
In this way, this method transforms the overlapping communities into a non-overlapping problem.

The first step of this method is selecting the ego-net of each node, where the ego-net denotes the subgraph generated
by the neighborhood of each node. For example, the ego-net of node 2 consists of [0, 3, 4, 6, 7, 9]. Then, as shown in
Fig. 3b, a local community detection method is applied to the ego-net of each node to partite it into sub-ego-nets. After
that, according to Fig. 3c, each node is incorporated with its sub-ego-net to construct a persona. Supposing the number
of sub-ego-nets for node i is ki (ki ≥ 1), we will add ki − 1 virtual nodes and construct ki personas, e.g., node 2* in Fig. 3c.
Furthermore, the personas of all the nodes are integrated to generate a larger graph, and a global community detection
method is employed to conduct community detection on the final persona graph (i.e., the topological network shown in
Fig. 3d and Fig. 3e). Finally, all the virtual nodes are merged with the corresponding nodes, which means these nodes are
overlapped into multiple communities. It is worth noting that although the calculation process described in Fig. 3 is about
unweighted graphs, this method can be also applied on weighted graphs [40]. A more detailed description and theoretical
guarantees of this method can be found in [40,41].

In this study, we employ the connected components algorithm for the local community detections. But for the global
community detections, since the constructed network is a weighted graph, the connected components algorithm utilized
in the original study is unsuitable for this task. So, we replace the connected components algorithm with the Louvain
algorithm [42] to improve detection capabilities by involving the edge weights. In the Louvain algorithm, the modularity
Q [43] described in Eq. (7) is the core to determine the closeness of communities. Here, m is the summation of the edge
weights in the graph. Meanwhile, sp and cp denote the strength and community of node p.

Q =
1
2m

∑
p,q

[wpq −
spsq
2m

]δ(cp, cq) (7)

δ
(
cp, cq

)
=

{
0, cp ̸= cq
1, cp = cq

(8)

The calculation process of this algorithm is displayed in Fig. 4. Here, we utilize an unweighted network as an example.
Overall, there are two phases in the calculation process of the Louvain algorithm. The first phase aims to find local
5
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Fig. 3. The calculation process of the ego-splitting method.

Fig. 4. The calculation process of the Louvain algorithm.

communities based on the increment of modularity ∆Q , and the second phase will aggregate each community as a
super-node and reconstruct the network. Then, each super-node in the second phase will be regarded as a node in the
next iteration, and the modularity-based principle will be applied to it again to generate a new first phase. This algorithm
will iteratively conduct these two phases until the termination condition, e.g., the modularity no longer changes, reaches
the maximum iterations, etc.

3. Data description and analysis

3.1. Data description

This study employs trajectory data from more than 16,000 taxis in Shenzhen, China, for traffic congestion modeling
in a large-scale road network. This dataset ranges from February 1st to 28th in 2019, including over 620 million records.
Columns of this dataset include license plate information, speed, longitude, latitude, angle, and passenger state, so that
various traffic information can be extracted, such as average speed, travel demand, travel time, etc.

Since Nanshan, Luohu, and Futian District are the most prosperous in Shenzhen city [44], this study selects these
three districts for further analysis. Fig. 5 shows the selected area of this study. It locates in the southwest of Shenzhen
and reaches 334.32 km2. Therefore, only trajectories in this area are extracted, and others are discarded. In this way,
6
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Fig. 5. The selected road network in Shenzhen city.

350,452,943 trajectory records and 17,007 road segments are obtained from this area. Then, the map-matching method
described in Section 2.2 is developed to bridge trajectory data with road segments. Afterward, we aggregate taxi speed
on each road segment into 5-min and employ it for further analysis.

Due to the low coverage of floating vehicles, missing data is an inevitable challenge for trajectory-based researches
and applications [45]. Therefore, in this study, the historical average (HA) method is employed to counter this problem.
For example, if traffic speed at 8:00–8:05 on a Monday is missing, we will employ the average speed at the same period
of remaining Mondays (where speed data is not missing) to recover it. All the experiments of this study are implemented
by python 3.8.12 on a Linux workstation (CPU: AMD 3700X @ 3.6 GHz, RAM: 64 GB memory).

3.2. Congestion count distribution

According to the traffic congestion identification method in Section 2.3, we can obtain the number of traffic congestions
at each road segment, named congestion count. The spatial distribution of congestion count is illustrated in Fig. 6. From
this figure, we can find that traffic congestion is a widespread phenomenon that significantly impacts almost all road
segments. Meanwhile, the spatial distribution of traffic congestion seems to be random, so it is quite difficult to understand
spatiotemporal patterns and identify bottlenecks for traffic management. Therefore, it is essential to apply an effective
data mining method to solve this problem.

Afterward, this figure also indicates that although most road segments have good traffic conditions, a few segments
still suffer extreme congestion. Fig. 7a displays the time-varying characteristics of average speeds at the most congested
road segment, where 5,888 congestions occurred. Here, the black line and gray shading represent the average speed and
standard deviations at this road segment of one month. It is evident that traffic speeds at this road segment during the
daytime are chronically low, but it allows vehicles to drive fast at night. Meanwhile, we further illustrate its cumulative
density distribution in Fig. 7b and display the estimated free-flow speed in Fig. 7a (i.e., the red line). From these figures,
we can find that the estimated free-flow speed of this segment is about 50 km/h, and it complies with general regulations
for urban roads. Meanwhile, the congestion threshold rc · FFS on this road segment is 29.99 km/h. However, during the
daytime, traffic speeds at almost all the periods are much lower than this value. Hence, we can regard that it is always
stuck in traffic congestion.

4. Numerical experiments and discussion

4.1. Analysis of network properties

According to Section 2.4, a directed weighted chronnet is constructed to model traffic congestions in the urban road
network. Overall, there are 17,007 nodes and 1,022,158 edges in this complex network. In this subsection, we introduce
several widely-used metrics to further understand the properties of this complex network, e.g., degree, clustering
coefficient, and centralities. The definitions of these metrics are described as follows.

(1) Degree and strength
7
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A

Fig. 6. Spatial distribution of congestion count in the study area.

Fig. 7. Speed distribution at the most congested road segment in the study area.

Since the constructed chronnet is a directed weighted graph, it can be understood in two aspects, i.e., node degree and
strength. The definition of these two metrics can be mathematically expressed by the following equations.

kouti =

N∑
j=1

aij, kini =

N∑
j=1

aji (9)

souti =

N∑
j=1

wij, sini =

N∑
j=1

wji (10)

Here, A = (aij)N×N and W = (wij)N×N denote the adjacent matrix and weight matrix of the chronnet, respectively.
Meanwhile, kouti stands the out-degree of node i, and souti represents the out-strength. According to their definitions, the
former expresses how many road segments interact with the target node, and the latter explains the interaction intensity.
Furthermore, from the definition of chronnet [39], road segments with long periods of congestion are likely to treat as
high degree nodes. Meanwhile, road segments with numerous traffic congestions are always assigned high strengths.

(2) Clustering coefficient
For directed graphs, the clustering coefficient is defined as Eq. (11) [46]. Here, the clustering coefficient denotes the

fraction of all possible directed triangles in the neighbors of each node. In this equation, T (u) denotes the number of
possible directed triangles. Meanwhile, k (u) is the total degree of node u, and k↔ (u) denotes the reciprocal degree.
ccording to its definition, the value of each c belongs to [0, 1], and it can represent the local connection density among
u

8
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Table 1
Network properties of the constructed chronnet.

Mean Min Max S.D.

Degrees (1 × 102) 1.202 0.000 8.160 1.561
Strengths (1 × 104) 2.281 0.000 49.487 4.424
Clustering coefficient 0.332 0.000 1.000 0.181
Degree centrality 0.007 0.000 0.048 0.009
Betweenness centrality 0.000 0.000 0.000 0.000
Closeness centrality 0.004 0.000 0.036 0.006

neighborhoods.

cu =

{ 2T (u)
k (u) (k (u) − 1) − 2k↔ (u)

, k(u) ≥ 2

0, else
(11)

(3) Degree centrality
For node u, supposing the number of its neighbors is nu, the degree centrality (i.e., DCu) is defined as the following

quation, where N is the number of total nodes.

DCu =
nu

N
(12)

(4) Betweenness centrality
Betweenness centrality aims to represent how many shortest paths pass through a specific node. Supposing σ (s, t)

enotes the number of shortest paths from node s to node t , the betweenness centrality of node u can be mathematically
xpressed by Eq. (13). In this equation, V denote the node set, and σ (s, t|v) represent the number of shortest paths passing
hrough node u.

BCu =

∑
(s,t)∈V

σ (s, t|u)
σ (s, t)

(13)

(5) Closeness centrality
Closeness centrality is defined as the reciprocal of the average distance from node u to the remaining nodes in the

etwork. Supposing node u has n − 1 reachable nodes, the calculation principle of this metric can be summarized
elow [47].

CCu =
n − 1
N − 1

·
n − 1∑n−1

v=1 d(v, u)
(14)

Table 1 summarizes the properties of the constructed chronnet. From the results, two conclusions can be intuitively
extracted. First, according to the centrality measures, almost all the centralities are close to zero. It indicates that rare
road segments will severely impact the whole road network. This is because the influence of traffic congestion is easily
diminished with distance. Meanwhile, we can obtain another finding from the clustering coefficient, i.e., there are apparent
clustering structures in this complex network. This metric in the chronnet is relatively high, indicating that there are strong
interactions among the neighbors of each node. In other words, it means that if two nodes have the same neighborhood,
congestion propagation is likely to occur between these two road segments. Therefore, these results indicate that traffic
congestion has typical local propagation patterns.

4.2. Degree and strength analysis

4.2.1. Degree distribution
The degree distribution is a valuable metric that can distinguish different network structures and understand network

properties. Since we transform the consecutive patterns of traffic congestions into a directed weighted graph, it is vital to
explore the distribution characteristics of in-degree and out-degree, respectively. From the traffic significance, in-degree
and out-degree in the chronnet can further reflect the propagation direction of traffic congestions. For instance, if a node
has a high in-degree, that means traffic congestions on other road segments are likely to spread to this node. Figs. 8
and 9 display the statistical and spatial distributions of node degrees, respectively. From these figures, several interesting
conclusions can be summarized.

(1) The statistical distribution of traffic congestions (i.e., Fig. 8a) is similar to degree distribution (i.e., Fig. 8b). Thus,
it indicates that the degree distribution of the chronnet can effectively capture that of traffic congestion. Meanwhile, the
probability distributions indicate that both in-degree and out-degree approximately follow the power-law distribution
in the early stage. This phenomenon reveals that the constructed chronnet has a typical feature of scale-free networks.
Thus, only a few nodes have high degrees, while there are numerous nodes with low degrees. In other words, several
9
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Fig. 8. Statistical distributions of congestion counts and node degrees.

road segments play a role as the hubs in the chronnet, and it always propagates congestion to other nodes. Therefore,
traffic conditions will significantly improve if we can identify these hubs and take the corresponding measures to cut the
propagation.

(2) Node degree is a widely-used factor for critical node identification [48]. From the spatial distribution of node
degrees, we can visually identify the bottlenecks in such a large-scale road network. Compared with the congestion count
distribution shown in Fig. 6, the chronnet significantly highlights the importance of critical road segments. Therefore, it
reveals that the chronnet can effectively capture the hidden spatiotemporal patterns of traffic congestion.

(3) As mentioned above, in-degree and out-degree can represent the propagation directions of traffic congestion.
Following this opinion, Fig. 9 further expresses the propagation directions from the macro level. In Fig. 9a, road segments
in area 1 have low in-degrees, and those in area 2 and 3 are higher. However, as shown in Fig. 9b, the opposite situation
happens in the out-degree. This phenomenon reveals that numerous traffic congestion originates from area 1. Since
its neighbor areas (i.e., area 2 and area 3) have high in-degrees, it means that they always receive congestion. So, the
propagation direction of traffic congestion is likely to be from area 1 to area 2 and area 3. Although all of these areas
always suffer the impacts of traffic congestion, the reasons for this influence are different. Therefore, it may be more
helpful to relieve traffic pressure by conducting effective measures in the origin of traffic congestions, i.e., area 1.

4.2.2. Strength distribution
In the chronnet, degree and strength can denote the interaction with other road segments from different aspects.

Therefore, after the exploration of degree distributions, Figs. 10a and 10b illustrate the spatial distribution of in-strength
and out-strength in the study area, respectively. Here, the inner plots show the statistical distributions of node strengths.
As mentioned above, the strength of each node denotes its interaction intensity with other nodes. Hence, we can also
regard the in-strength and out-strength as the frequencies of incoming and outgoing traffic congestion.

Overall, this figure also expresses similar opinions to the degree distributions mentioned above. From the inner plots,
we can find that the node strengths in the constructed chronnet also have typical heavy-tailed characteristics. It reveals
that there exist several traffic congestion hubs in the urban road network. Although the proportion of these hubs is
10
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Fig. 9. Spatial distributions of node degrees.

deficient, they always play a critical role in congestion propagation. Meanwhile, according to the spatial distributions of
node strengths, bottleneck regions and propagation directions of traffic congestion also express similar trends with degree
distributions.

Meanwhile, we can further identify the role of each road segment in the congestion propagation process. Specifically,
for a road segment with high in-strength and low out-strength, we can treat it as a critical node in alleviating congestion.
Otherwise, we can regard it may exacerbate traffic congestion. Following this opinion, we calculate ∆si = souti − sini on all
he road segments and employ the Gaussian Mixture Model (GMM) to find cluster structures based on this measure. Fig. 11
hows the spatial distribution of the clustering results, where the inner plot displays the scatter between in-strength and
ut-strength.
It is worth noting that the original results of GMM are symmetrical, i.e., cluster 1 and cluster 4 are divided into the

ame cluster. Considering the traffic significance in congestion propagation, we distinguish them into different clusters
nd merge several clusters with similar distribution characteristics. Finally, as shown in this figure, the roles of road
egments in congestion propagation can be classified into four clusters. For instance, cluster 1 (i.e., black nodes) and 4
i.e., green nodes) denote road segments that can significantly alleviate and exacerbate congestion, respectively. Therefore,
ransportation administration should focus on relieving pressures on road segments of cluster 1. Meanwhile, scatters in
luster 2 and 3 are closely distributed around the baseline (i.e., red lines), indicating that the out-strengths of these nodes
11
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Fig. 10. Distribution of strengths in the study area.

are almost equal to the in-strengths. Hence, we can regard these nodes as transfer nodes in the propagation process.
Furthermore, from the spatial distribution of clusters in Fig. 11, we can find that these transfer nodes are mainly located
on arterial roads. In contrast, road segments in urban blocks are more likely to affect the propagation process of traffic
congestion.

4.3. Influence scope analysis

In this subsection, we explore the spatial influence scope of traffic congestions based on the chronnet. Fig. 12 displays
the relationship between distance and edge features in this complex network. Specifically, Fig. 12a expresses the statistical
distribution of the real-world distance between two connected nodes. And in Fig. 12b, the x-axis denotes distance among
oad segments, and the y-axis represents the average weight on the corresponding edges. Here, the distance matrix is
alculated by the longitude and latitude of the midpoint of each road segment. In these two subfigures, breakpoints for
iecewise functions are determined by the open-source python package named Piecewise Linear Functions (pwlf ) [49].
According to Fig. 12a, four different distribution characteristics are identified, and the slopes of these four lines

express a continuously decreased trend with distance. Specifically, the boundaries of these four lines are 675.00 m,
1962.34 m, and 5949.38 m. Since edge in the chronnet means congestion propagation between these two road segments,
12
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Fig. 11. Distributions of the clustering results based on ∆s.

Fig. 12. Influence scope of traffic congestion in the chronnet.

this relationship between distance and edge count is named as influence likelihood. There is an interesting finding that
the scope of the fitted line is positive in the first interval, while all the remaining intervals have negative scopes. This
phenomenon indicates that the influence likelihood of congestion propagation peaks at 675.00 m. Within this threshold,
traffic congestion can continuously spread to other road segments, so that this interval can be regarded as the expansion
stage of traffic congestion. After this value, since the surrounding road segments can help relieve traffic pressure, the
impact between two road segments with far distance will weaken. With the increment of distance, it becomes more and
more difficult to spread congestion, so the slopes of fitted lines sharply drop.

Moreover, we can draw a similar conclusion from the influence intensity variation shown in Fig. 12b. In this subfigure,
the scatters can be fitted by three piecewise lines, and the slopes of these lines can be obtained from the legend. These
results are consistent with the propagation patterns of traffic congestion, i.e., it is likely to spread to the surrounding
road segments during a short time. Similar to Fig. 12a, the average weights on the edges and line slopes show an overall
downward trend. Since surrounding roads act as a bridge in congestion propagation between distant road segments, the
influence intensity on the nearby roads is stronger than others. Therefore, the interaction intensity among road segments
significantly decreases with distance increment, leading to sharply descending edge weights.

Furthermore, a difference also exists in these two subfigures. In Fig. 12b, all the fitted slopes are negative, demonstrat-
ing that the average edge weight negatively correlates with distance. Oppositely, the scope of the first interval in Fig. 12a is
positive. Therefore, we can conclude that although traffic congestion is more likely to propagate to road segments within
675 m, influence intensities also decrease with distance.
13
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Fig. 13. Spatial distribution of the top 5 communities.

.4. Results of bottleneck identification

According to the spatial distributions of degrees and strengths, nodes with extremely high degrees (or strengths) are
losely located, e.g., area 1 in Fig. 9b. Here, we further explore the local clustering structures of traffic congestion by the
verlapping community detection algorithm.
Fig. 13 displays the spatial distributions of the top five communities. It is worth noting that following the settings

n [39], we set the values of the distance threshold dmax as +∞, so almost all the consecutive congestions are possible to
be connected. Interestingly, even though only the node strengths are employed in the community detection algorithm,
the results in Fig. 13 still reveal that road segments of each community are still located in the same local area. It indicates
that the constructed chronnet can effectively reflect the actual evolution patterns of traffic congestion. The main reason
for this phenomenon is that traffic congestion is always spread locally in both the spatial and temporal dimensions. Hence,
consecutive congestions are more likely to occur on the surrounding road segments with the congested road segments,
making each local area has its unique evolution pattern. Overall, although the chronnet method seems simple, its principle
is consistent with traffic congestion. Therefore, it is correct and reasonable to apply it for congestion modeling.

Meanwhile, we can extract another interesting finding from this figure. The spatial distributions of top communities
are similar to node degrees and strengths. For instance, area 2 and 3 in Fig. 9 are almost extracted as community 2 and 3
in Fig. 13, respectively. It reveals that there are strong local connections within congestion areas. Specifically, since there
are significant congestion interactions between area 1 and area 2, area 2 and the right part of area 1 are clustered into
the same community. Similarly, this phenomenon can also be found in area 3 and the left part of area 1. Therefore, this
finding further demonstrates the evolution process described in Section 4.2.1.

According to the construction process of the chronnet, communities denote node groups where spatiotemporal events
often occur in the same period [39]. In this study, it means that traffic congestion in each community may have its unique
time-varying characteristics. Therefore, we illustrate the temporal evolution patterns of traffic congestions in the top five
communities in Fig. 14a. In this figure, the locations of these five communities match the spatial distribution in Fig. 13,
and each line denotes the kernel density estimate (KDE) distribution of congestion time in each community. In this figure,
congestion time is defined as the period (i.e., 5-min) when the road segment is congested. This figure indicates that traffic
congestions in these communities have different temporal evolution patterns. For example, community 3 is the only
community prone to congestion during morning and evening rush hours. This is because numerous companies locate
in this area, especially high-tech companies. So, commuters always bring critical traffic pressure to the road network,
resulting in significant congestion during rush hours. Besides, we can also find that during the early morning, traffic
congestions are more likely to occur in community 2. This phenomenon is because many residential areas distribute in
this area. So, vehicles leaving these residential areas in the early morning cause traffic congestion.

Furthermore, we also compare the KDE distributions of daily congestion count, degree, and strength in Fig. 14. These
figures show several differences among different communities. Based on Fig. 14b, we can find that the daily congestion
count of community 3 is similar to community 4, and both of them are always at a low level compared to other
communities. However, the degrees of road segments in community 3 are much higher than in community 4 and other
communities, and strength distribution also holds the same view. Therefore, it means traffic congestions in community 3
have more powerful propagation capabilities. Overall, the community analysis results demonstrate that the chronnet can
effectively identify consecutive congestions and have a typical community structure. Meanwhile, the applied community

detection method can also distinguish the different characteristics of different areas.
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Fig. 14. KDE distributions of network properties in the top 5 communities.

4.5. Comparisons between weekdays and weekends

Due to commute flow, travel patterns on weekdays and weekends always express different characteristics. In this
subsection, we further explore their different congestion patterns. It is worth noting that the Chinese New Year holiday is
included in this dataset, so residents worked on February 2nd and 3rd (i.e., Saturday and Sunday) and then took holiday
in the following week. Hence, we regard traffic congestion on this holiday as weekends. In this way, we utilize traffic
speed on weekdays and weekends to construct two chronnets, respectively.

Fig. 15a shows the daily congestion count distribution during weekdays and weekends. According to this figure, the
average daily congestion counts on weekday and weekend are similarly distributed. Meanwhile, we can also see that
60 is a demarcation point. Distribution density of traffic congestion on weekends always higher than weekdays before
60, while the opposite occurs after 60. This phenomenon indicates that it is more likely to occur serious congestions
on weekdays. However, according to the ∆s′ distribution shown in Fig. 15b, it reveals that both in-strength and out-
strength on weekdays are much higher than that on weekends. Here, ∆s′i stands the difference between node strength
n weekdays and weekends. It means that although traffic congestion count between weekdays and weekends is not
ignificantly different, there exist stronger interactions between congested road segments on weekdays.
Furthermore, the spatial distribution of ∆s′ is displayed in Fig. 16. In order to reduce the visual impact of extreme

alues, we set a threshold (i.e., ∆s′[∆s′ > 5000] = 5000) to draw this figure. From this figure we can obtain that there
xist several extreme congested areas on weekdays. Meanwhile, it is interesting to find that the most congested area
s also similar with the community 2 and community 3 in Fig. 13. As mentioned in Section 4.4, numerous high-tech
ompanies, including the Shenzhen High-tech Industrial Park, locate in this area, making the road network extremely
usy on weekdays. Hence, this area always suffers the significant pressure of logistics and commuter flow. But in the
eekends, this phenomenon is significantly alleviated, so the big difference appears between weekdays and weekends.
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Fig. 15. Congestion characteristics comparisons between weekdays and weekends.

Fig. 16. Spatial distribution of ∆s′ in the selected road network.

. Conclusions

This study regard traffic congestions as spatiotemporal events and employ a complex network method to uncover their
ropagation patterns. A two-stage map-matching method is developed to bridge taxi trajectory with the road network.
ased on the extracted traffic speed on each road segment, we define a free-flow speed and employ it to determine
raffic congestion. In this way, the chronnet method is utilized to explore the consecutive patterns in network-scale traffic
ongestions. The main conclusion of this study is summarized below.
(1) This study provides new insight into traffic congestion modeling in the large-scale road network. It demonstrates

hat it is suitable to regard traffic congestions as spatiotemporal events and explore their spatiotemporal patterns from
he aspect of complex networks.

(2) Both the degree and strengths follow the long-tailed distribution. It means that there are several hubs for congestion
ropagation in the urban road networks. Meanwhile, these two metrics can help identify the role of road segments in
ongestion propagation. According to the influence scope analysis, traffic congestions are more likely to spread to the
oad segments within 675.00 m, but the influence intensity always continues to decrease with distance.

(3) The community detection results indicate that traffic congestions likely express apparent local clustering struc-
ures. The KDE distribution of traffic features demonstrates congestion in each community has its unique consecutive
haracteristics.
(4) It is interesting to find that there are rarely significant differences in traffic congestion counts between weekends

nd weekdays. However, traffic congestions on the weekdays have a more substantial influence on the surrounding road
egments.
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From the overview of this study, there still exist several limitations. For instance, since taxis do not account for a high
proportion of motor vehicles, their trajectory data is always sparsely distributed in the urban road network. Due to critical
barriers in data collection, only taxi trajectories are involved in this study. Future studies may consider introducing multi-
source traffic data and emerging technologies [36] in traffic congestion analysis [50]. Meanwhile, since traffic congestion
has different levels, classifying it into different levels and integrating it into the chronnet construction method may also
be an interesting direction for future works. Furthermore, complex networks have been rapidly developed in recent years.
Future works can pay attention to other advanced complex network methods [38,51] for congestion modeling.
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