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Abstract—Trajectory prediction for individual vehicles has
emerged as a vital component in IoT-based traffic management
applications, inducing various control strategies for alleviating
traffic congestion. This study focuses on a novel topic in this field,
i.e., making joint predictions for the next location and travel
time. Based on principles of vehicle mobility, we learn vehicle
trajectories as discrete events in the spatiotemporal dimension
and propose a neural temporal point process, named TrajTPP.
This model employs two attention mechanisms to learn spatial
and temporal dependencies, respectively, and a novel recurrent
structure is proposed to integrate spatiotemporal features.
Meanwhile, a gated residual attentive network (GRAN) is also
designed to combine these learned dynamic features with static
travel information. Then, the intensity-free learning strategy is
employed to make probabilistic forecasting for the next travel
times, and we develop a prior transition probability to involve
historical travel behaviors in location predictions. Beyond the
conventional prediction task, we design a sampling strategy to
simulate vehicle mobilities by TrajTPP. Experiments from license
plate recognition data in Changsha, China, demonstrate that our
model outperforms advanced baselines, and sampling results
provide evidence of its ability to accurately simulate vehicle
mobilities. Moreover, its impressive accuracy on the latest next-
location prediction benchmark is also listed in the Appendix.

Index Terms—Trajectory prediction, temporal point process,
probabilistic forecasting, trajectory generation.

I. INTRODUCTION

N urban road transportation systems, individual vehicles
serve as the basic atoms. Their travel characteristics
formulate the spatiotemporal evolution patterns of
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network-scale traffic flows. Therefore, exploring hidden
patterns of vehicle trajectories can help to further understand
the spatiotemporal dependencies in urban road networks. The
rapid advancement of intelligent transportation systems (ITS)
has led to the widespread proliferation of location-aware
sensors, such as license plate recognition (LPR) and Bluetooth
devices. With these widely installed traffic detectors, vehicle
trajectories can be accurately monitored, resulting in the
development of various IoT-based applications [1].
Specifically, these IoT methods facilitate accurate data fusion
from traffic sensors located in different areas, leading to the
development of innovative management strategies that
enhance traffic control performance. This is particularly
beneficial for location-based services (LBS), such as Mobility-
as-a-Service (MaaS), vehicle navigation [2], etc. Currently,
accurate prediction for future trajectories is regarded as the
foundation of many LBS applications. Variants of individual
trajectory prediction cover destination prediction [3], next
location prediction [4], POI recommendation [5], etc. Due to
the advantages in congestion alleviation [6] and route
guidance [7], the next location prediction attracts the
continuous attention of researchers [8], [9].

Since the beginning of this century [10], scholars have
made sustained efforts on the next location prediction.
Generally, this task aims to forecast the future locations of an
individual traveler (or vehicle) based on the previous mobility
records [11]. In this way, traffic managers can estimate future
routes of vehicles in advance, so numerous personalized
assistance strategies, such as dynamic routing, speed advice,
etc., can be utilized to release potential congestion in urban
road networks [12], [13]. For instance, once the future
trajectories of numerous vehicles are known, adaptive signal
control can be implemented through information transmission
and fusion techniques among multiple detectors to reduce
delays at intersections. Meanwhile, since accurate predictions
for future trajectories highly rely on compressive mining of
historical mobility patterns, this task can further enhance our
understanding of vehicle travel behaviors in urban road
networks. These features from trajectory modeling and
prediction are vital to establishing capable traffic simulation
models [6] to support numerous downstream tasks.

Current research in this field can be classified into two
categories: (i) next-location prediction; (ii) joint prediction for
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the following locations and travel times (or arrival times).
Since travel time is susceptible to uncertain and random
factors, achieving accurate performance in the latter task is
considerably challenging. Affected by this barrier, studies in
the early stage are always limited in making predictions for
the next location [4], [10]. However, this strategy cannot offer
temporal information for traffic managers and travelers, so it
may not be entirely practical. In addition, because locations
and travel times are characterized by spatiotemporal patterns,
the joint prediction can provide an opportunity for mutual
correction, leading to higher prediction accuracies. Therefore,
researchers gradually paid their interest in joint prediction
about individual trajectories [14], [15], but critical limitations
and barriers still lie, such as:

e Conventional studies always regarded the trajectory
prediction task as the time-series prediction, so
several recurrent neural networks (RNN) were
directly applied [11]. However, vehicle trajectories
reflect the mobility process in discrete spatial
locations with discrete time stamps, such as
intersections and road segments. So, this prediction
task differs from classical time-series forecasting
(e.g., traffic flow predictions). Although sequence
characteristics are present in vehicle trajectories, we
should adopt a capable approach that accommodates
their discrete features, rather than directly applying
traditional time-series prediction methods.

e Many deep learning models have been developed to
improve trajectory prediction accuracies, but current
studies mainly belong to point prediction, especially
for travel times. It means that it only outputs a single
value for the next travel time. However, travel times
in urban road networks always express extreme
uncertainty [16], so the predicted single value cannot
represent the actual travel time accurately and
reliably. Hence, probabilistic forecasting may be a
potential solution to address this issue.

e In trajectory prediction, applications of conventional
models are always limited to predicting future
trajectories. Although several studies conducted
interpretable analysis from prediction models, these
efforts are still limited in experimental results
analysis. Overall, current studies cannot provide
abundant information to explore future evolution
patterns of network-scale traffic flows. This problem
is crucial in real-world traffic management but still
lacks effective solutions. Therefore, how to generate
future vehicle mobilities from these well-trained
prediction models still needs further exploration.

Motivated by these limitations, this study attempts to model
individual trajectories as the temporal point process (TPP) and
extract the spatiotemporal dependencies. To learn the mobility
patterns of individual vehicles, we propose the TrajTPP model
via the effective integration of TPP and deep learning models.
In this method, we first utilize the spatial and temporal
attention mechanisms to capture the sequence patterns,

respectively. Afterwards, a spatiotemporal gated recurrent unit
(STGRU) is proposed to integrate the temporal and spatial
correlations dynamically. Meanwhile, a gated residual
attentive network (GRAN) is also developed to integrate these
dynamic features with static information (e.g., vehicle type,
day of the week, etc.). Finally, an intensity-free learning
strategy is used to make probabilistic forecasting for the travel
time. To further involve historical traffic information in the
location prediction task, we also define a prior transition
probability from historical travel behaviors and integrate it
with learned context vectors. Overall, the primary
contributions of this study are listed below.

e This study learns vehicle trajectories as the temporal
point process (TPP) and proposes a TrajTPP model to
make probabilistic predictions for the next location
and travel time. TPP is employed to describe vehicle
mobility patterns among discrete spatial locations,
and several novel modules are further proposed and
integrated to enhance learning capabilities.

e We develop a multi-view spatiotemporal learning
framework to extract sequence patterns of vehicle
trajectories. The STGRU model is proposed to
effectively explore the interactions between spatial
and temporal correlations, and GARN is designed to
incorporate dynamic and static features.

e In addition to accurately predicting the next location
and travel time, we further propose a vehicle
trajectory simulation strategy using TrajTPP. This
enables the well-trained TrajTPP model to serve as an
effective simulator for generating spatiotemporal
travel patterns of network-scale vehicle mobility.

e Extensive experiments from the real-world dataset in
Changsha, China, reveal the superior performance of
TrajTPP over several advanced trajectory prediction
methods and neural TPPs. Meanwhile, the sampling
experiment demonstrates its reliable capability in
trajectory generation. We also show its superiority on
the latest open-source benchmark in next-location
prediction in the Appendix.

The remainder of this paper goes as follows. Section II
briefly overviews the previous studies in trajectory prediction.
We detailly describe the proposed TrajTPP model and its
components in Section III. Experiment results from different
aspects are summarized in Section IV. Finally, we conclude
this work and provide outlooks for future studies in Section V.

II. RELATED WORKS

Trajectory prediction is a critical component in numerous
LBS applications. In recent decades, numerous studies have
been conducted in this field. According to prediction modes,
current works can be classified into next location and joint
predictions. The significant difference between these two
categories is that the latter focuses on the simultaneous
prediction of the next location and corresponding travel time.
Representative studies and evolution trends in these two fields
are summarized in the following subsections.
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A. Next Location Prediction

As its name says, location prediction aims to predict future
locations of an individual traveler or vehicle. Hence, exploring
the hidden patterns in previous locations is the key step to
achieving accurate forecasting [17]. This field arose in the
early stage of this century, with pioneering scholars initially
working to solve this problem using statistical models. From
then on, Markov-based models have become the most
influential method in the next-location prediction. Ashbrook &
Starner [10] generated critical locations from GPS records by
k-means clustering algorithm, and then a Markov chain (MC)
model was proposed to forecast future movements. More
details and recent developments about MC-based mobility
prediction models can be found in [18], [19]. In addition to
these Markov-based models, other probabilistic graphical
models were also adopted in location prediction. For instance,
Pathirana et al. [20] proposed a Robust Extended Kalman
Filter (REKF) to predict the next location in the Global
System for Mobile Communications network. Additionally,
Monreale et al. [21] proposed a variant of the decision tree to
estimate the next location, named T-pattern Tree.

However, limited by their simple structure, these statistical
prediction methods may encounter challenges in prediction
performance and generalizability. In the era of big data, deep
learning methods gradually won the favor of researchers in
numerous engineering problems [22]-[24]. Since the previous
locations can be characterized as sequence data, the recurrent
neural network (RNN) and its variants, i.e., long short-term
memory (LSTM) and gated recurrent units (GRU), are widely
applied in this field. For example, Liu et al. [4] combined the
distance information with the conventional RNN model and
proposed a spatial-temporal recurrent neural network (ST-
RNN) for next-location prediction. Besides RNNs, Chen et al.
[6] designed a convolutional embedding model (CEM) in
next-location prediction. Liang & Zhao [12] considered the
movement directions and combined it with a Seq2Seq model
for vehicle trajectory prediction, named NetTraj. More
recently, Chen et al. [25] introduced the multi-context features,
such as individual preferences and social relations, and a
graph neural network (GNN)-based model was proposed to
predict the next location. Hong et al. [26] introduced the
Transformer model into trajectory prediction and proposed a
multi-head self-attentional neural network (MHSA) for the
next-location prediction.

B. Joint Prediction

The location prediction task mentioned above focused
solely on predicting the following locations, disregarding the
corresponding travel times. However, incorporating future
travel times could benefit both travelers and traffic managers,
leading to a higher-quality traffic system. Following this idea,
several efforts have been made in this field. Gidoéfalvi & Dong
[14] employed an inhomogeneous continuous-time Markov
model to predict the departure time and the next location of
individual travelers. Zhao et al. [27] treated trip information as
a tuple (¢, o, d) and proposed a Bayesian n-gram model to

make joint predictions for the start time (¢), origin (o), and
destination (d). Mo et al. [28] designed an input-output hidden
Markov model (IOHMM) to make simultaneous predictions
for the time and destination of the next trip. Afterwards, deep
learning models are also widely adopted in joint prediction.
Krishna et al. [15] developed a hybrid LSTM and a cascaded
LSTM to predict the next mobility activity and the
corresponding duration time. Sun & Kim [11] combined the
self-attention mechanism with LSTM to predict the next
location and travel time of individual vehicles.

Although these deep learning models can enhance the
accuracies in trajectory prediction, the uncertainty in travel
time is still unsolved. Actually, travel time in urban road
networks is affected by numerous factors, so it is always
characterized by uncertainty. However, current studies in
trajectory prediction mainly focus on point prediction for time
prediction, which means they only output a single value for
the next travel time. Therefore, this type of prediction cannot
explore the uncertainty in travel times, making prediction
results inaccurate and unreliable. Instead of point prediction,
probabilistic forecasting for the next location and travel time
might be more suitable for this task. The temporal point
process (TPP) model has been demonstrated as a powerful tool
for modeling event sequences and making probabilistic
forecasting. Currently, several researchers have applied the
TPP-based models in traffic congestion modeling and
prediction [29], [30]. Meanwhile, a few studies also
introduced TPP into mobility prediction. Du et al. [31]
proposed an RNN-based TPP model, named recurrent masked
temporal point process (RMTPP), and evaluated it on the taxi
pickup dataset in New York City. Additionally, Yang et al. [32]
further developed a recurrent spatio-temporal point process
(RSTPP) to make probabilistic forecasting for the check-in
time. Wu et al. [33] introduced the attention mechanism into
neural TPP models and proposed an attentive marked temporal
point process (AMTPP) for individual mobility prediction in
urban metro systems.

However, these previous studies focus on using deep
learning methods to separately learn temporal and spatial
dependencies in previous trajectories, ignoring the interactions
between these two features. Meanwhile, the correlations
between dynamic information (i.e., previous locations and
travel times) and static factors (e.g., time of day, vehicle type,
etc.) still need further exploration. Furthermore, these studies
are also limited in the prediction task, and the capability to
analyze future evolution patterns is still overlooked.

III. METHODOLOGY

In this section, we first provide the problem formulation to
introduce the background and basic settings of our model.
Then, we detail the framework and components from Sections
[IL.B to IIL.F. Afterwards, a sampling-based simulation strategy
is further proposed in Section III.G.

A. Problem Formulation
Table I shows the data samples of the involved LPR dataset,
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TABLE 1
DATA SAMPLES OF THE LPR DATASET

Index  License plate Collection time Location index
1 21030badd 2022-10-01 18:44:52 7
2 21030badd 2022-10-01 18:47:21 17
3 21030badd 2022-10-01 18:48:42 30
4 95118dcc44 2022-10-01 23:11:30 99

_________________________

Y

—

Fig. 1. Description of the sliding window strategy.

where each row represents a vehicle record at an intersection.
Supposing t;‘ and mJ’-‘ denote the arrival time and location of

the jth record of vehicle k, the prediction task in this study can
be concluded as: given a sequence of trajectory records of kth
vehicle as ;¥ = {(tF, m¥), (¢, mk),..., (tk, mKk)}, the goal is
to simultaneously predict the next location m¥,, and arrival
time tX, ;.

Generally, prediction for the arrival time can be
equivalently transformed to inter-time (i.e., travel time)
forecasting, so we will employ these terms interchangeably
throughout the entire paper. In this way, the prediction task
can be mathematically formulated by Eq. (1) and Eq. (2).
Here, ‘[}‘ = tjk - tjk_l denotes the travel time between the jth
and the last location, and F (-) represents the mapping function
to estimate the probabilistic distributions of the next location
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and travel time. Therefore, p(tX,,, mk, ,|#¥) can be regarded
as the conditional probability distribution of the next travel
time 7¥,, and location mK,, based on F}¥, where H¥
denotes the extracted features from T*.
— {(+k K\, 5 — K
T ={(tf,mf):j = 12,..,n,1f > 0} (1)

P(Trsr, My r | ) = F(T) (2)

It is worth noting that the length of trajectory (i.e., n) is
variable in different trajectories, instead of using a predefined
parameter as in several previous studies [12]. Additionally, we
also introduce a sliding window strategy to make predictions.
Taking a trajectory with n records as an example, the
prediction mode can be abstractly summarized in Fig. 1, where
the individual trajectory with length n can be regarded as
splitting into n — 1 sub-trajectories.

B. Framework

This study aims to use the TPP-based framework to address
trajectory prediction. According to the definition by Shchur et
al. [34], neural TPP always follows the following modeling
steps:

(1) Encode the event sequence 7, into a feature vector y;X.

(2) Extract the context vector ¥ by exploring the temporal
dynamics in yX.

(3) Parameterize the conditional distribution over the next
event p(Ty 1, My |HY).

Following this framework, we propose the TrajTPP model
and illustrate its structure in Fig. 2. As shown in this figure,
our model is composed of several critical components: (1)
encode input location and travel time sequences into high-
dimensional latent space and use attention mechanisms to
learn the corresponding dependencies; (2) a spatiotemporal
feature fusion block, which proposes the STGRU model to
incorporate the extracted temporal and spatial features and
employs a global attention mechanism to enhance long-term
modeling capability; (3) an external feature fusion block based
on the proposed GRAN model to integrate the dynamic
features with static information; (4) an intensity-free learning
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block relied on the log-norm mixture distribution to estimate
distributions of the next travel time; (5) next-location
prediction module, where we define a prior transition
probability and integrate it with the learned context vectors to
model the categorical distribution of the next location. In this
figure, the “RG” and “UG” refer to the reset gate and update
gate. Overall, the TrajTPP model can be regarded as an
effective integration of conventional TPP and advanced
spatiotemporal learning modules. All the components are
described in detail in the following subsections.

C. Sequence Data Modeling

1) Feature Encoding

For each vehicle, its trajectory data 7;¥ in this study records
the continuous transformation patterns among different
intersections. Therefore, it has typical characteristics of
sequence data. More specifically, the trajectory data includes
temporal patterns (i.e., travel time sequence) and spatial
patterns (i.e., location sequence). Here, we represent the travel
time sequence and location sequence as s; € R™ and s; € R",
where n denotes the trajectory length, and extract the hidden
patterns from temporal and spatial dimensions, respectively.

It is noted that each element in the travel time sequence and
location sequence is a scaler value. To fully explore the hidden
information, it is necessary to encode them into higher-level
features (i.e., h, € R™*% and h; € R™ %) by a transformation
layer. For the travel timess sequence s;, all the elements are
continuous, so we simply employ a fully-connected network
(FCN) to enhance expressive capability. However, the linear
transformation is unsuitable for s;, because locations should
be treated as discrete categorical variables. Currently, there are
two types of methods to represent categorical features in LBS-
based prediction, i.e., one-hot [11] and Embedding [3], [6].
Compared to one-hot encoding, the Embedding strategy can
map encoding results into arbitrary dimensions, reducing
dimensionality and enabling further exploration of correlations
between different categories. This means that similar
intersections can be placed closer together in the embedding
space. Considering these advantages, we adopt Embedding to
transform location sequence s; into context vector h;.

2) Spatial and Temporal Attention Mechanism

After the feature transformation, it is essential to explore the
hidden patterns in each context vector. To achieve this goal,
temporal and spatial attention mechanisms are applied to h;
and h;, respectively. The self-attention mechanism [35] is the
most widely used method in numerous sequence modeling
tasks. Continuous efforts have been conducted to further

:C —
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Fig. 3. Structure of the GAU model.

improve the performance and efficiency of the conventional
self-attention mechanism, e.g., Combiner [36], Interpretable
multi-head attention mechanism [37], etc. Among these
methods, the gated attention unit (GAU) [38] is a novel variant
of the self-attention mechanism, and it shows significant
superiority in effectiveness and learning capability. Especially,
its well-designed structure can avoid the multi-head
operations, making significant improvement in the
computation cost. Therefore, we employ this method to
implement the spatial and temporal attention mechanism. In
this way, the sequence correlations in the travel time and
location sequence can be extracted adaptively.

Fig. 3 shows the structure of the GAU model. Overall, it
still inherits the “self” operation (i.e., @, K, V) in the
conventional self-attention mechanism. Here, we take the
context vector of travel time sequence h; as an example to
describe the calculation process of this model. As shown in
Eq. (3), a LayerNorm operation [39] (i.e., LN(:)) is firstly
applied to the input data to enhance training stability.
Afterwards, three parallel FCN layers are employed to
transform the context vectors into different representation
subspaces, which is shown in Eq. (4)-(6). In these equations,
W and b represent the corresponding weight matrices and
bias, and o () denotes the activate function.

Et = LN(h,) 3)
U=o(hW, +b,) 4)
V =o(hW, +b,) (5)
Z = o(hW, + b,) (6)

Afterwards, as shown in Eq. (7)-(8), a “scale-offset”
strategy is adopted to limit the learned attention weights to a
specific range and eliminate the impact of numerical scales.
This kind of dimensionless strategy is useful in enhancing
training stability and performance. Here, a linear combination
is employed to implement this strategy, where the y and [ are
trainable parameters to control the boundary. Based on these
two context vectors Q and K, the attention weight matrix A
can be obtained through Eq. (9). In this equation, relu?(-)
represents the square ReLU activate function (i.e., [relu(-)]?)
[40], and b denotes the bias. To avoid future information
leakage, A is constrained to be a lower triangular matrix.

Q = scale_offset(Z) = y,Z + B, (7
K = scale_offset(Z) = yxZ + B ®)
A =relu?(QK + b) )

Finally, as shown in Eq. (10), the attention weight matrix A
is incorporated with V by multiplication, and this operation
can be regarded as a “gate” to control information interactions.
Here, O denotes the element-wise production. Meanwhile, a
residual connection (i.e., h;W,) is further applied to enhance
the stability and convergence. Similarly, we also employ this
attention mechanism on location context vector h; to explore
the spatial correlations.

0 = (U O MW, +hW, = (U Q ANW, + h,W,

3) Spatiotemporal Gated Recurrent Unit
The above subsection adopts attention mechanisms to
extract the corresponding correlations in the travel time and

(10)
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Gated Mechanism

Fig. 4. Structure of the proposed STGRU model.

location sequences, but the hidden spatial and temporal
correlations are separately addressed, which means there is a
lack of interaction between these features. Meanwhile,
conventional neural TPPs always use RNN-based structures to
enhance the autoregressive modeling performance [31].
However, in these RNN-based models, the previous location
sequences are mainly concatenated with the corresponding
travel times as input data. According to vehicle mobility
patterns, the arrival locations and times are highly related, so
these structures are challenging to capture the hidden
dependencies between these two sequences, leading to limited
capability in sequence modeling. To address this issue, this
study proposes a spatiotemporal gated recurrent unit (STGRU)
model to effectively fuse these correlations.

The proposed STGRU is motivated by GRU, which has
been widely used in numerous traffic prediction tasks.
Supposing X = {x;, X,, ..., X, } represents the input features,
the mathematical formulation of the conventional GRU can be
summarized as follows.

R, = sigmoid(x,W,, + H,_4Wy, + b,.) an
Z, = sigmoid(x,W,, + H,_ W), + b,) (12)
H, = tanh(x, Wy, + [R; © He_1]Wpy + by) (13)
H=Z,OH._1+(1—-2) Qﬁt (14)

Here, the reset gate (i.e., R;) and update gate (i.e., Z;) are
used to control the information interactions between previous
and current input features. Similarly, W and b in these
equations denotes the trainable weighted matrices and bias.
However, the conventional GRU model only involves the
temporal context, and there is no interaction between temporal
and spatial information.

To address this problem, we propose the STGRU model and
illustrate its structure in Fig. 4. Overall, it first separately

inputs the location sequences (X©® = {x,x{, .., x{"}) and

the travel time sequences (X(® = {xit), xét), s x,(f)}) into two

different reset and update gates to generate the corresponding
hidden features, i.e., RED, Rgt), Zt(l), and Zt(t). Afterwards, we

further utilize a gated mechanism [41] to integrate temporal
features with spatial features as follows.

w, = sigmoid(RW . + ROW, o + b;) (15)
Ro=w, ORY + (1-w,) ORY (16)
w, = sigmoid(Z°W ), + ZOW ), + by) (17)
Z,=w,0zP+1-w) O z® (18)

The proposed gated mechanism can be regarded as an
adaptive combination of spatial and temporal information,
while ensuring the sequence modeling capability. Specifically,
it first calculates a weight (i.e., w,,w, € [0, 1]) and uses it to
integrate different context vectors. After this step of hidden
feature fusion, we also apply this gated mechanism on the
input data xt(l) and xt(t) to generate the comprehensive input
representation X;. Then, all the fused features are input to the
following equations to update the current hidden states.

H, = tanh(X, Wz + [Re © He_1]Wy5; + by) (19)

H=Z,OH_,+(1-Z)0OH, (20)

By these operations, the proposed STGRU model can
further explore the spatiotemporal dependencies among the
input locations and travel times. However, since it still inherits
the structure of GRU, a common problem in the conventional
RNNs also arises, i.e., its long-term modeling capability is
limited. Therefore, the extract context vector {H,, H,, ..., H,}
is further input to a global attention mechanism layer to
enhance long-term learning performance. Here, we also select
GAU to implement this attention mechanism.

D. External Feature Extraction

The deep learning modules mentioned above mainly aim to
extract the spatiotemporal dependencies from dynamic
features, i.e., previous locations and travel times. In addition
to these dynamic features, other static factors also play a vital
role in trajectory prediction [3]. Thus, we further introduce
three critical external factors, i.e., start hour, day of the week,
and vehicle type, to reflect collective travel patterns and
enhance trajectory prediction performance. For each trip, these
factors do not change over time, so we name them static
features. According to their definitions, since these static
factors are categorical variables, the Embedding strategy is
also employed to encode them into high dimensions.
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To improve the integration performance between dynamic
and static features, based on the gated residual network (GRN)
[37], we further propose a gated residual attentive network
(GRAN). The framework of the proposed GRAN model is
shown in Fig. 5. Supposing H € R™*%: denotes the dynamic
features (i.e., context vectors from the global attention layer),
where n and d, represent trajectory length and hidden
dimensions, respectively, the calculation process of the
proposed GRAN model is shown below. In these equations,
C € R% denotes the context vector of external features after
Embedding, and ELU(-) denotes the exponential linear unit
(ELU) function [42].

m, = ELU(HW,, + CW,, + b;) 21
Ny =MW, + b, 22)
H,, = GRAN(H, C) = LN(H + GAU(7,)) (23)

Here, #,, is the aggregated features that will be input to the
probabilistic distribution estimation module. In Eq. (21), this
method first utilizes a weighted combination of dynamic
features (i.e., H) and static features (i.e., C), and the ELU
function is employed to enhance nonlinear learning capability.
Then, a linear layer without activation function in Eq. (22) is
further utilized for feature extraction. Afterwards, a gated
layer (i.e., GAU in Eq. (23)) is applied to integrated context
vectors and further explores the sequence patterns in the fused
features. Overall, relying on these equations, this model can
effectively integrate the dynamic features with static factors,
generating a more comprehensive representation of the
previous travel patterns.

E. Probabilistic Distribution Estimation

1) Distribution of the Next Travel Time

Based on the extracted features from these deep learning
modules, a TPP model is employed to estimate the
probabilistic distribution of the next travel time. TPP is a
capable tool to explore the temporal dynamics in discrete
events, and it has been applied in numerous applications,
including ambulance demand estimation [43], earthquake
forecasting [44], etc. Conventional TPP methods always suffer
limitations in flexibility and tractability to model the complex
intensity function. Therefore, following the intensity-free
learning strategy of TPP [45], TrajTPP aims to directly learn
the probability density function (PDF) of the next travel time
by a log-norm mixture distribution. Eq. (24) shows the
formulation of log-norm mixture distribution. Here, w € R,
1 € RM, and o € RM denote the weights, means, and standard
deviations of this mixture distribution.

M
_ Wi (logT B :um)z
r(tlo,p,0) = ) ——=—exp(————5——
mzl‘mm\/Zn

204

The intensity-free learning strategy learns these parameters
from the aspect of neural density estimation. Specifically, it
employs three parallel FCN layers with M hidden units, and
then different activation functions are utilized to transform the
learned context vectors to the unique constraint scope of each
parameter. For instance, since weights in the mixture
distribution should follow »M_; w,, =1 and w,, =0, the

) (@4

softmax(-) activation function is employed in Eq. (25). In this
way, probabilistic forecasting for the next travel time can be
achieved by the estimated distribution.
w = softmax(¥,W _+b,)
o =exp(H,W,_ +b,)
u=¥w,+ b#
2) Distribution of the Next Location

Generally, the principle of the next-location prediction task
can be described as follows: given the current location and the
transition probabilities to all other locations, the objective is to
estimate the most probable next location. Therefore, we first
apply a FCN layer on H,, to generate the learned transition
probabilities of the input sequence as H,, € R™V where N is
the number of intersections. Here, each row in this transition
probability matrix, i.e., h™ € RY , denotes the transition
probability from the nth location of mth vehicle to all the
candidate locations.

In addition to this learned transition probability, we can also
extract several prior transition information from the historical
trajectory dataset. For instance, when considering an
intersection (i.e., A) with two downstream intersections,
namely B and C, if the historical transition volumes from 4 to
B are significantly higher than from 4 to C, we can infer that
intersection B is more probable to be the subsequent location
after intersection A. Following this opinion, we involve the
prior volume transition probability to reflect the historic travel
behaviors, and a fusion module is further developed to
integrate this feature with the learned transition probability.

To achieve this goal, we first extract traffic volumes vlpj
from the historical trajectory dataset, which denotes the
number of vehicles from intersection i to j directly. Then, a
normalization operation is utilized to generate the prior
transition probability pf’j, ie., pipj = vf’]. / Zken; Vi» wWhere N;
denotes the potential downstream intersections of node i.
Hence, plpj can reflect the empirical likelihood between these

(25)

intersections. To keep consistency with the learned transition
probability hX, we denote the transition probability vector
from the ith location of vehicle k as w) € RV,

Moreover, when predicting the next location m¥X, ; based on
the input sequence T = {(t¥, mk), (t¥,m§),..., (tk,m5)},
we can obtain n prior transition probability vectors (i.e., w¥,
wX, ...,wk). To fully explore the hidden temporal patterns and
extract a more expressive probability representation, we first
concatenate these vectors to generate a prior transition
probability matrix W,¥ € R™", and a GRU layer with hidden
dimension N is applied to generate the hidden feature W,* €
R™N Here, the last row in WX, expressed as W € R", can
be viewed as the transition probability from the current
location (i.e., m¥) to all the candidate intersections. Finally, to
incorporate this prior information with the learned context
vector hX, a fusion strategy [46] is applied as follows.

z, = sigmoid(hk © W)
h¥ = softmax(z, © hX + (1 — z,) © WK)

(26)
27)
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Algorithm 1. Sampling-based simulation strategy for future vehicle mobility generation from scratch.

Input: Maximum time T, ,,, number of simulations N, number of trips L.
Output:  Sequence of simulated arrival times and locations 7' = {7} 1, ..., Ty y; o3 T 1, -, T w )
L. for! =1:L do
2. forn =1:N do
3. Generating external features (i.e., v}, s}, d}) and initiate location mﬁw from categorical distributions.
4. Setfy = 0,i = 0, and hy « TrajTPP{[t} o, m} o; v, s}, dL ]}
5. while £; < Ty, do
6. Compute parameters w;,,, 0;,1, ki1 for log-norm mixture distribution based on h;.
3z ~ Categorical(w; ;)
7. Sample the next travel time from the log-norm mixture through & ~ Normal(0, 1)
Tis1 = exp (01412 €+ Wiyt 3)
8. Sample the next location 7;,; ~ Categorical(PTP(hi)).
9. Compute the next arrival time &, = &; + T;41.
10. if ;11 < Tpox do
11. Record the arrival time t};; < &4, and location m}, ;,; < i;4;.
12. Set hyyy « TrajTPP([thy, ..., th iy Mh 1, ., My 1y U, sE, dY]).
13. Seti«i+1.
14. end if
15. end while
16 Ton = {(th b ) (e ), o e 1L 0
17. end for
18. end for

In Eq. (26), by using sigmoid(-) as the activate function, we
aim to learn an element-wise weight matrix z,, with all the
elements in the range of [0, 1]. Then, Eq. (27) is utilized to
make a linear combination between the prior transition
probability WX and the learnable context vector hX. The final
output feature hX is regarded as the categorical distribution for
mk, ., mathematically expressed as: mk, , ~Categorical(hk).

F. Loss Function

The proposed TrajTPP method belongs to the generative
models, so the negative log-likelihood (NLL) is utilized as the
loss function for model training. This metric is shown in Eq.
(28), where L denotes the total number of trajectories, and n;
represents the length of ith trajectory. Meanwhile, p*(‘[f) and
p*(m}) denote the probabilities that T; and m; follow the
corresponding estimated distributions. Therefore, the first term
and second term indicate the modeling performance of travel
times and locations, respectively.

L n
1 3 .
NLL = ‘EZZ“"*‘“’ (7)) +logp*(md]  (28)

Yi=1 =1

G. Sampling-based Simulation Strategy

Compared to conventional trajectory prediction methods,
TPP stands out as a generative model, which extends its utility
beyond basic prediction tasks. Its generative capability allows
it to simulate the trajectories of numerous vehicles. In other
words, we can use the well-trained TrajTPP model to simulate
the spatiotemporal evolution patterns of vehicle mobility in
urban road networks. Nowadays, data-driven trajectory
simulation has become an important topic in human mobility

analysis [47], playing a critical role in urban planning and
traffic management. To address this issue cost-effectively
using TrajTPP, we propose a sampling-based simulation
strategy for trajectory generation based on the well-trained
TrajTPP model.

Generally, there are two common approaches to generating
new event sequences from TPPs, i.e., sampling from scratch
and conditional sampling [48]. The difference between these
two modes is that the former starts generation from t = 0 and
knows nothing about previous events. In contrast, conditional
sampling can be viewed as simulations for future trajectories
based on previous k records.

Algorithm 1 summarizes the generation process of the first
type. Since this study involves three external features in
trajectory prediction, these features are unavailable for the
scratch simulation. Thus, we first utilize three categorical
distributions to fit the corresponding external features from the
training and validation sets. For instance, if V denotes the
categorical distribution of vehicle types, we can sample a
vehicle type for [ th simulation by v;~Categorical (V) .
Similarly, the start hour s; and day of week d; for each
sequence can be generated in a similar way. Meanwhile, since
no prior location information is involved in this type of
simulation, we sample an initiate intersection according to the
categorical distribution of start locations from the historical
trajectory dataset. Additionally, to better capture the real-world
mobility patterns, we also generate a T,,,, for each iteration
from empirical distributions of historical end times.

It is worth noting that this strategy is also applicable for
conditional sampling, although it relies on prior knowledge
about previous trajectories. In this case, the external features
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Fig. 6. Distributions of LPR devices and traffic features in
the study area.

should be pre-known, so we can directly input them instead of
making estimations from categorical distributions (i.e., Step
3). Additionally, h,, in this situation should also be set as the
context vector of the last record.

Overall, this algorithm can be considered as generating N
potential trajectories for each trip, and this process (i.e., from
Step 2 to Step 17) can be executed in parallel. In each
simulation process, we iteratively generate the next locations
and travel times using TrajTPP. Here, all the travel times and
locations are generated by sampling from the log-norm
mixture and categorical distributions, respectively. The context
vector z € RM in Step 7 denotes a one-hot vector [45], and the
PTP(-) operation in Step 8 represents the prior transition
probability (PTP) fusion module. Afterwards, as shown in
Step 12, we integrate the current generated location mfu- 4+1and
arrival time t};,, with previous records to obtain a new
context vector h;,,. The above steps will be repeated until the
termination condition Ty, is satisfied.

IV. EXPERIMENTS

A. Experiment Settings

1) Data Description

This study employs the license plate recognition (LPR) data
from Changsha, China, as the case study. The LPR dataset is
collected by fixed cameras at urban intersections, and it covers
abundant traffic information such as passing time, license
plate number, lane number, etc. As shown in Fig. 6a, there are
112 intersections in the study area, and the collection duration
of this dataset was collected from October 1, 2022, to October
31, 2022. To ensure privacy protection, all license plate
information has been anonymized by assigning a unique index
to each vehicle. Meanwhile, the detection errors in LPR
devices may introduce noise in trajectory sequences, leading
to unreliable predictions. The specific solutions to this

problem are summarized below.
e Duplication recognition. If a vehicle is detected by
the same intersection multiple times within 30
seconds, we only keep one record and remove others.
e Missed recognition. The missed recognition of
license plates may cause vehicle trajectories to be
incomplete. Considering missed recognition has a
low occurrence frequency, following the setting in the
previous LPR-based trajectory prediction study [8],
only location sequences with occurrence more than

30 times will be used for further analysis.

To obtain the consecutive sequences without parking, a
temporal threshold &; is first applied to the original trajectories
of each vehicle. That is, if the inter-time of two consecutive
records from the same vehicle is longer than §;, we will split
them into different trips. Since intersections in this study show
a dense layout, we set §; as 15 minutes. Then, following the
previous study [11], trips within §g = 5 intersections will be
regarded as abnormal trips and removed.

Existing studies have demonstrated that different types of
vehicles may express different travel patterns [49], so we also
involve this critical factor in trajectory prediction. According
to the involved dataset, there are 4 major types of vehicles,
i.e., small vehicles, heavy vehicles, small electric vehicles, and
heavy electric vehicles. Therefore, an Embedding layer is
employed to encode these vehicle types into high-dimensional
features. Meanwhile, travel speeds and route choices may also
exhibit different patterns throughout the day. After the trip
splitting strategy by &;, the differences in the collection time
for the same trajectory are not significant. Thus, for each
trajectory, we further introduce the temporal information (i.e.,
start hour and day of the week) of the first record into external
features. Finally, without loss of generality, we randomly
select 100,000 trips for individual mobility modeling and
prediction.

2) Evaluation Metrics

For the joint prediction of individual trajectories, this study
focuses on where the next location is and how long the travel
time will be. Considering the uncertainty in locations and
travel times, the prediction performance of this task should be
evaluated from three perspectives:

(i) Multi-class classification for the next location. Here, we
employ the Mark NLL (NLL'), accuracy (ACC), F1 score, and
Recall@5 as metrics. The definition of Mark NLL can be
obtained from Eq. (28) and serves as a similarity metric for the
predicted and actual location distribution. Additionally,
Recall@5 indicates the proportion of relevant locations
successfully retrieved among the top 5 predicted locations.

(i) Point prediction for the next travel time. The mean
absolute error (MAE) is utilized to evaluate prediction
performance, and we employ the median of the estimated PDF
as ‘L“'ij to denote the point prediction results.

(iii) Probabilistic forecasting for the corresponding travel
time. Three metrics are introduced for evaluation, i.e., Time
NLL (NLL!), mean empirical coverage (MEC), and mean
Pinball loss (MPL). Here, MEC is utilized to measure the
average empirical coverage percentage. As shown in Eq. (29),
Pinball loss is employed to evaluate the prediction
performance of a-quantile. In this study, we employ {5%,
10%, ..., 95%} quantile forecast to calculate MEC and MPL.

Pinball,

ni . .
1 zN:Z a max(tj‘ - f]-"a, 0) +
>N S (1-a) max(tf, — 1}, 0)
For NLL!, MAE, NLL!, MPL, and NLL, a lower value
indicates higher prediction performance. For the remaining

29

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on February 12,2025 at 03:07:50 UTC from IEEE Xplore. Restrictions apply.

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/J10T.2024.3523497

10

IEEE INTERNET OF THINGS JOURNAL

metrics, higher values indicate better prediction performance.
3) Model Setting

We randomly divide the trajectory dataset into a training set,
a validation set, and a test set, using a splitting ratio of 60%:
20%: 20%. The mini-batch training strategy with a batch size
of 1024 is applied for model training. In the training process,
the learning rate and regularization are set as 10™* and 107>,
respectively. Afterwards, the maximum training epoch is 500,
and we adopt the early stop strategy on the validation set with
patience of 20 to avoid overfitting.

The TrajTPP model is implemented using PyTorch on an
Ubuntu workstation with RTX 3090 GPU. In this model, we
set the hidden dimension of the FCN and Embedding layers in
sequence data modeling to 128. For the log-normal mixture
distribution, we assign the number of components as 64. As
mentioned in the data description, there are four types of
vehicles involved in this study, and an Embedding layer with
the hidden dimension of 64 is used for feature transformation.
Similarly, the static temporal information is also encoded by
Embedding layers with the same dimension. Under these
settings, the average training time per epoch is about 10
seconds, so the TrajTPP model can be well trained within 2
hours on a single GPU.

B. Baselines

This study introduces 11 advanced models as baselines. The
involved baselines range from conventional methods to novel
neural TPPs. We briefly summarize these baselines as follows.

e FPMC [50]. In the Factorizing Personalized Markov
Chains (FPMC) model, the matrix factorization is
incorporated with Markov chains to predict the next
location.

e GRU. In this model, we first employ a GRU layer to
encode the input travel time and location sequences.
Then, two FCNs are applied to predict travel time
and location, respectively.

e DeepMove [51]. DeepMove combines the attention
mechanism with recurrent neural networks to make
forecasting for the next location.

e HST-LSTM [52]. The Hierarchical Spatial-Temporal
Long-Short Term Memory (HST-LSTM) model
integrates the LSTM-based encoder-decoder structure
with spatial-temporal influence to predict the next
location.

e H-LSTM [11]. The Hybrid LSTM (H-LSTM)
incorporates the LSTM layer with self-attention
mechanism to predict the next location and travel
time simultaneously.

e S-LSTM [11]. Sun & Kim [11] further proposed a
Sequential LSTM (S-LSTM) model in the joint
prediction task, which used two separate LSTM
structures to learn the spatial and temporal
correlations, respectively.

e STAN [53]. The Spatio-Temporal Attention Network
(STAN) developed a bi-layer attention model to
further explore the non-adjacent and non-consecutive
relationships in human mobility prediction.

e RMTPP [31]. The RMTPP model is a pioneering
effort which bridges the neural networks with
conventional TPP methods. A GRU-based model is
employed to capture the temporal dynamics in
previous trajectories.

e Exponential [54]. This method employs an
exponential distribution to model the intensity
function of TPP. Similarly, it utilizes GRU to explore
the time-varying patterns.

e FullyNN [55]. Motivated by the framework of
conventional neural TPP, the FullyNN model also
employs the GRU layer to enhance the temporal
dependency. Afterwards, it proposes a learnable
cumulative conditional intensity function and designs
a neural network for parameter estimation.

e LogNormMix [45]. Shchur et al. [45] proposed an
intensity-free learning framework for neural TPP
modeling. It uses the log-norm mixture distribution to
estimate the inter-times of the next events.

In the experiments, we employ the open-source urban
computing package [libcity [56] to implement FPMC,
DeepMove, HST-LSTM, and STAN. In all the TPP-based
baselines, locations and travel times are regarded as marks and
inter-times, respectively. Based on this primary setting, we
employ the deep learning method to estimate the parameters of
each distribution. Additionally, to further show the superiority
of spatiotemporal learning modules in TrajTPP, we combine
these modules with density estimation methods in all the other
TPP models, named TrajRMTPP, TrajExp, and TrajFullyNN in
Table II.

C. Prediction Comparisons

Table II summarizes the prediction performance of TrajTPP
and the selected baselines. Metrics with the best performance
are marked in bold. According to the prediction principle,
several baselines only belong to location forecasting, so
evaluation metrics for travel time prediction are unavailable.
Meanwhile, we also take 3 vehicles as instances and compare
their predictions with ground truths by TrajTPP in Fig. 7.

Overall, several interesting conclusions can be indicated
from these results.

e In this table, FPMC reaches the poorest performance
in the location prediction task. This poor accuracy
highlights the challenge of capturing spatiotemporal
dependencies in vehicle trajectories using a simple
structure. Meanwhile, the future location prediction
performance of GRU is also unacceptable, indicating
that it is unsuitable to model the trajectories as time
series directly. On the other hand, almost all the TPP-
based baselines outperform these basic methods, and
they can achieve comparable performance with
advanced deep learning models. It is noticeable that,
apart from a GRU layer, these TPP-based methods
lack complex spatiotemporal learning modules. In
other words, the intensity functions in these TPP-
based baselines can help them to achieve accurate
predictions, which demonstrates that TPP-based
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TABLE 11
PERFORMANCE COMPARISONS OF THE TRAJECTORY PREDICTION TASK

Location prediction Travel time prediction NLL
NLL! ACC Fl-score Recall@5  NLL! MAE MPL MEC
FPMC 0.475 0.417 0.827 \ \ \ \ \
GRU \ 0.617 0.603 0.896 \ 1.187 \ \ \
DeepMove \ 0.720 0.714 0.966 \ \ \ \ \
HST-LSTM \ 0.724 0.720 0.967 \ \ \ \ \
H-LSTM \ 0.640 0.628 0.916 \ 1.186 \ \ \
S-LSTM \ 0.626 0.616 0.906 \ 1.068 \ \ \
STAN \ 0.531 0.539 0.920 \ \ \ \ \
RMTPP 0.804 0.723 0.718 0.967 1.577 1.553 0.793 0.358 2.381
Exponential 0.802 0.724 0.718 0.967 1.608 1.408 0.778 0.370 2.409
FullyNN 0.816 0.722 0.716 0.966 1.053 2.024 0.871 0.203 1.869
LogNormMix 0.833 0.720 0.712 0.964 1.004 0.992 0.385 0.442 1.837
TrajRMTPP (ours) 0.752 0.745 0.740 0.971 1.580 1.466 0.807 0.372 2.332
TrajExp (ours) 0.751 0.745 0.740 0.971 1.589 1.332 0.650 0.375 2.340
TrajFullyNN (ours)  0.755 0.743 0.738 0.970 0.968 2.295 0.953 0.179 1.723
TrajTPP (ours) 0.751 0.746 0.741 0.970 0.868 0.913 0.356 0.431 1.619
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methods. Previous studies have identified the
uncertainty in travel times [16], increasing the

models are capable for the trajectory prediction task.
e It is worth noting that after fusing with

spatiotemporal learning modules proposed in this
study, the prediction accuracies of all the TPP-based
methods (e.g., TrajRMTPP) are significantly
improved. Specifically, the improvements of ACC
and Fl-score in these methods approximately
exceeded 3%, outperforming all the other baselines.
Meanwhile, the total NLLs mainly decrease by 0.1,
with the largest decrease exceeding 0.2. This
phenomenon demonstrates the effectiveness of our
proposed model in sequence dependency extraction.

Among all the baselines, TrajTPP expresses superior
performance, especially in travel time prediction. It is
the only model with NLL less than 0.90, and this
metric on TrajTPP is much lower than all the other

difficulties in achieving accurate prediction. As
illustrated in Fig. 7, TrajTPP can effectively reduce
this impact by probabilistic forecasting. Although
time-varying patterns of travel times are highly
dynamic, the prediction intervals can accurately
capture these relationships. Furthermore, we also
evaluate the performance of TrajTPP on the latest
next-location prediction benchmark [26]. The
prediction results are summarized in the Appendix,
and the proposed TrajTPP model still expresses
superiority over the latest baselines in all the metrics.
We share the details about the experiment settings
and results at https:/github.com/SunderlandAJ-
1130/TrajTPP.
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Fig. 8. The estimated PDF and CDF distributions with
TrajTPP.

Afterwards, it is noted that travel time prediction is a
component of trajectory prediction, and its performance is also
highly dependent on the accuracy of the other prediction task,
i.e., location prediction. For instance, supposing we make an
extremely accurate prediction for the next travel time via a
point prediction, this accurate prediction result also seems to
be useless if the predicted location is wrong. Instead, as
illustrated in Fig. 8, if we implement probabilistic forecasting,
the estimated PDF distribution always consists of several
peaks. In these figures, CDF refers to the cumulative
distribution function, and the red line denotes the ground truth
travel time. Therefore, the predicted results can cover more
potential information than a single value, making the predicted
results more reliable. Overall, considering the uncertainty [16]
in travel times, probabilistic forecasting may be a better
solution for the trajectory prediction task.

D. Ablation Analysis

According to the definition in Section III, the proposed
TrajTPP model consists of several crucial components. In the
above subsections, we have demonstrated its superiority over
advanced baselines, but the importance of each element is still
unclear. Thus, we perform an extensive ablation experiment
for further analysis. Here, we remove each critical component
from TrajTPP to evaluate the influence of each module. Below
is a detailed description of these components.

e w/o GAU. This model removes all the attention
mechanisms in TrajTPP.
e w/o GRAN. This model drops the external feature

TABLE III
PERFORMANCE COMPARISONS OF ABLATION STUDY
NLL! NLL! NLL
TrajTPP 0.751 0.868 1.619
w/o GAU 0.762 0.887 1.649
w/o GRAN 0.809 0.990 1.799
w/o STGRU 0.759 0.884 1.643
w/o PTP 0.756 0.878 1.634
-S4 0.772 0.902 1.674
-MHA 0.759 0.879 1.638
-IMHA 0.767 0.906 1.673

learning module in TrajTPP.

e w/o STGRU. In this model, we replace the STGRU
layer with the conventional GRU model.

e w/o PTP. This mode removes the prior transition
probability (PTP) fusion module and only involves
the learned context vector for next-location
prediction.

In addition, to further evaluate the performance of different
attention mechanisms in the trajectory prediction task, we also
employ the widely-used self-attention mechanism, multi-head
attention mechanism, and the Interpretable multi-head
attention mechanism [37] to replace the GAU model. To
distinguish these methods, we name them as -S4, -MHA, -
IMHA, respectively. In the -MHA and -IMHA models, the
number of heads is set as 8.

Table III presents the experiment results of the ablation
study from various aspects. After dropping each component,
the prediction performance of all the sub-models experience
decrease. It means that all the components are useful to
improve the prediction performance of TrajTPP. Notably, the
absence of the GRAN module exhibited the most significant
reduction in both location and travel time prediction,
emphasizing the critical role of external feature fusion
modules in TrajTPP. Meanwhile, this phenomenon also
indicates that the involved static factors can effectively reflect
travel behaviors in the urban road network and provide more
prior knowledge to the TrajTPP model, thereby improving the
prediction performance. Afterwards, from the comparison
between the remaining models, all the sub-models have
experienced a decrease in their prediction accuracy, with w/o
STGRU showing a larger decline. This phenomenon shows
that the proposed STGRU model is capable of capturing the
correlations between previous trajectory and location
sequences. Meanwhile, this result also indicates that involving
historical travel patterns is also effective in enhancing
trajectory prediction performance.

Furthermore, in the lower half of Table III, we utilize three
widely-used attention mechanisms to replace the GAU in
TrajTPP. However, the prediction performance shows that all
of these alternative attention mechanisms will lead to a
decrease compared to GAU, especially for the naive self-
attention and Interpretable multi-head attention mechanism.
Moreover, it is noted that prediction accuracies of these two
models are even lower than the TrajTPP without any attention
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Fig. 9. Comparisons of intersection traffic volumes between
ground truth and sampling trajectories.

o

mechanism (i.e., w/o GAU in this table). Therefore, although
there are numerous novel types of attention mechanisms,
variances exist in the learning capabilities across different
methods, so it is necessary to select a suitable method.

Overall, among all the combined models, TrajTPP
consistently achieves superiority, suggesting that integrating
these factors into trajectory prediction is useful.

E. Sampling Analysis

A primary advantage of TrajTPP over conventional
trajectory prediction methods is that it can simulate evolution
patterns of future vehicle trajectories via sampling. To
evaluate the accuracy and reliability, we further conduct a
sampling experiment on the test set. Here, we adopt both the
conditional sampling and scratch sampling strategy to generate
new trajectory sequences. Since the collection times on the
test set are located in the whole month, the ground truth and
simulation results are sparsely distributed in the temporal
dimension. For simplification, we accumulate all the results
into a single day for better visualization.

For the conditional sampling, we directly use the external
features (e.g., vehicle type), initial location, and first collection
time of each trajectory as prior information for sequence
generation. On the contrary, for scratch sampling where prior
information cannot be involved, we begin by estimating the
categorical distributions of each external feature from
historical trajectories on the training and validation sets. Then,
during the simulation process, these categorical distributions
are used to randomly sample the prior information as external
features. Therefore, conditional sampling is applicable for
implementing traffic control measures based on real-time
vehicle information, and the latter is more useful in long-term
traffic planning and policy evaluation. For instance, we can
modify the percentage of small and heavy vehicles to explore
travel behaviors under different penetration rates of trucks.

Following these settings, we simulate trajectories 100 times
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Fig. 10. Comparisons of hourly traffic volumes between
ground truth and sampling trajectories.

and employ average traffic volumes as the evaluation metric.
Here, the estimated traffic volumes are calculated by the
generated arrival times and locations. Fig. 9a illustrates the
traffic flow comparison by TrajTPP. Each data point in this
figure denotes traffic volumes at a specific intersection. This
result shows that, for the majority of intersections, the
simulated volumes can closely align with ground truths,
indicating that these simulated trajectories can accurately
capture the actual evolution patterns of network-scale traffic
flows. Moreover, according to Fig. 9b and Fig. 9c¢, the R? for
these two predicted lines are 0.834 and 0.837, respectively,
and traffic volumes from scratch sampling are relatively closer
to the true traffic volumes. This is because scratch sampling
utilizes the abundant prior information to generate static travel
information, making it a more comprehensive understanding
of the actual patterns of vehicle mobility behaviors.

Furthermore, we also conduct comparisons on time-varying
characteristics of simulated traffic volumes at urban
intersections. Here, we employ hourly traffic volumes as
examples for illustration and display the fitting results among
all the intersections in Fig. 10a and Fig. 10b, where R?
indicates that the conditional sampling can better capture the
temporal evolution patterns of vehicle mobility. Meanwhile, as
shown in Fig. 10c and Fig. 10d, we select two intersections as
examples, and they show that the simulated volumes can
accurately follow the time-varying trends of ground truth,
especially during non-peak hours. However, since no real-time
information is involved in scratch sampling, the simulation
performance is relatively poorer than conditional sampling.
Moreover, traffic volumes from sampled trajectories are
smoother compared with the ground truth. The reason is that
we sample trajectories 100 times, so the generated traffic
volumes can be regarded as the average of simulations to
enhance reliability. In conclusion, these results show that the
sampling strategy is both effective and accurate in exploring
future varying patterns in the urban road network.
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TABLE 1V
PREDICTION COMPARISONS ON THE GEOLIFE BENCHMARK
Acc@]1 Acc@5 Acc@10 Fl MRR NDCG@10
1-MMC 24.1 38.1 39.5 22.7 30.5 32.7
FPMC 24.01+0.6 53.7£2.0 57.81£0.4 13.51+0.6 35.510.7 40.840.6
LSTM 28.410.8 55.84+1.3 59.1£0.7 19.31£0.8 40.24+1.1 44.7140.6
LSTM attn 29.840.7 54.6x1.5 58.2+1.7 21.31£0.8 40.71£0.4 45.0+0.7
DeepMove 26.1+0.8 54.240.8 58.710.6 18.9+£0.4 38.240.2 42.610.5
MobTeast 29.540.6 51.310.7 56.2+1.0 17.3+0.6 39.3+0.4 43.440.9
MHSA 314409 56.4+0.4 60.810.8 21.8£1.0 42.5+0.7 46.51£0.3
TrajTPP 33.840.6 58.31+0.5 62.2+1.1 24.3+0.8 44.310.7 48.7+0.7
Improvements +7.64% +3.37% +2.30% +11.47% +4.24% +4.73%
V. CONCLUSION APPENDIX

This study focuses on the next location and travel time
prediction of individual vehicles in the urban road network. To
adapt to the spatiotemporal patterns of vehicle trajectories, we
combine deep learning models with intensity-free TPP and
propose a TrajTPP framework to make probabilistic
forecasting for the next trajectory. In this model, we design
spatial and temporal mechanisms to explore the hidden
patterns in previous trajectories. Then, a STGRU layer is
further proposed to integrate the spatial and temporal features
and enhance the autoregressive capabilities. Furthermore, we
also propose a fusion module named GRAN to incorporate
static information with dynamic features (i.e., previous
locations and travel times). Afterwards, an intensity-free
learning TPP is employed to model time-varying patterns of
vehicle trajectories, and we define a prior transition
probability to enhance next-location prediction performance.
According to extensive experiments from the LPR dataset in
Changsha China, TrajTPP performs superior over advanced
deep learning methods and neural TPPs. Beyond the
conventional prediction task, we design a sampling-based
simulation experiment and find that the simulated results can
effectively capture the spatiotemporal mobility patterns of
traffic volumes in the urban road network.

Although our TrajTPP outperforms advanced baselines,
there still remain several potential improvements in future
studies. Firstly, compared with conventional deep learning
methods, TPP has stronger interpretability, which induces
several explainable applications, such as latent network
discovery [57], Granger causality [58], etc. Therefore, future
studies can explore this property in analyzing spatiotemporal
dependencies among different intersections, which is essential
in network-scale traffic prediction and control. Secondly, data-
driven simulation [47] has gradually become a critical topic in
human mobility modeling. This paper has demonstrated
TrajTPP model can cheaply achieve accurate simulation. How
to further enhance simulation performance is an intriguing
topic for the following studies. Furthermore, relying on the
powerful capability in discrete modeling, it is worth applying
TPP-based methods to other types of traffic events modeling,
such as traffic congestion, traffic accidents, etc.

To further demonstrate the generalizability of TrajTPP in
the classical mobility prediction task, we also employ the
latest benchmark [26] on the Geolife dataset [59] for next-
location prediction. To enhance fairness, we directly introduce
the datasets and experiment results from the latest research
[26] for evaluation. In this dataset, since there are more than
1000 candidate locations, and the spatial correlations in this
dataset are relatively sparse and weak, the prior information
learning module is not involved in this experiment.
Meanwhile, because there are only 45 users in this dataset, we
utilize an embedding layer to represent the user preference and
integrate it with TrajTPP via the proposed GRAN module.
Performance comparison of TrajTPP and baselines (i.e., 1-
MMC [60], FPMC [50], LSTM, LSTM attn, DeepMove [51],
MobTeast [61], and MHSA [26]) are shown in Table IV. More
details of datasets and experiment settings on this benchmark
can be found in Hong et al. [26] and our Github via
https://github.com/SunderlandAJ-1130/TrajTPP.

From this table, we can observe that our proposed TrajTPP
model can achieve significant superiority over the latest
baselines. Specifically, compared to the most advanced
MHSA model, our model can achieve 7.64% (i.e., from 31.4
to 33.8) and 11.47% (i.e., from 21.8 to 24.3) rises in Acc@!
and F1, respectively. These experiment results demonstrate
that relying on its well-designed combination of TPP and deep
learning model, TrajTPP is more capable than conventional
deep learning models in mobility prediction.
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