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Abstract—Trajectory prediction for individual vehicles has 

emerged as a vital component in IoT-based traffic management 
applications, inducing various control strategies for alleviating 
traffic congestion. This study focuses on a novel topic in this field, 
i.e., making joint predictions for the next location and travel 
time. Based on principles of vehicle mobility, we learn vehicle 
trajectories as discrete events in the spatiotemporal dimension 
and propose a neural temporal point process, named TrajTPP. 
This model employs two attention mechanisms to learn spatial 
and temporal dependencies, respectively, and a novel recurrent 
structure is proposed to integrate spatiotemporal features. 
Meanwhile, a gated residual attentive network (GRAN) is also 
designed to combine these learned dynamic features with static 
travel information. Then, the intensity-free learning strategy is 
employed to make probabilistic forecasting for the next travel 
times, and we develop a prior transition probability to involve 
historical travel behaviors in location predictions. Beyond the 
conventional prediction task, we design a sampling strategy to 
simulate vehicle mobilities by TrajTPP. Experiments from license 
plate recognition data in Changsha, China, demonstrate that our 
model outperforms advanced baselines, and sampling results 
provide evidence of its ability to accurately simulate vehicle 
mobilities. Moreover, its impressive accuracy on the latest next-
location prediction benchmark is also listed in the Appendix.  
 
Index Terms—Trajectory prediction, temporal point process, 
probabilistic forecasting, trajectory generation.  

I. INTRODUCTION 
N urban road transportation systems, individual vehicles 
serve as the basic atoms. Their travel characteristics 
formulate the spatiotemporal evolution patterns of 
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network-scale traffic flows. Therefore, exploring hidden 
patterns of vehicle trajectories can help to further understand 
the spatiotemporal dependencies in urban road networks. The 
rapid advancement of intelligent transportation systems (ITS) 
has led to the widespread proliferation of location-aware 
sensors, such as license plate recognition (LPR) and Bluetooth 
devices. With these widely installed traffic detectors, vehicle 
trajectories can be accurately monitored, resulting in the 
development of various IoT-based applications [1]. 
Specifically, these IoT methods facilitate accurate data fusion 
from traffic sensors located in different areas, leading to the 
development of innovative management strategies that 
enhance traffic control performance. This is particularly 
beneficial for location-based services (LBS), such as Mobility-
as-a-Service (MaaS), vehicle navigation [2], etc. Currently, 
accurate prediction for future trajectories is regarded as the 
foundation of many LBS applications. Variants of individual 
trajectory prediction cover destination prediction [3], next 
location prediction [4], POI recommendation [5], etc. Due to 
the advantages in congestion alleviation [6] and route 
guidance [7], the next location prediction attracts the 
continuous attention of researchers [8], [9].  

Since the beginning of this century [10], scholars have 
made sustained efforts on the next location prediction. 
Generally, this task aims to forecast the future locations of an 
individual traveler (or vehicle) based on the previous mobility 
records [11]. In this way, traffic managers can estimate future 
routes of vehicles in advance, so numerous personalized 
assistance strategies, such as dynamic routing, speed advice, 
etc., can be utilized to release potential congestion in urban 
road networks [12], [13]. For instance, once the future 
trajectories of numerous vehicles are known, adaptive signal 
control can be implemented through information transmission 
and fusion techniques among multiple detectors to reduce 
delays at intersections. Meanwhile, since accurate predictions 
for future trajectories highly rely on compressive mining of 
historical mobility patterns, this task can further enhance our 
understanding of vehicle travel behaviors in urban road 
networks. These features from trajectory modeling and 
prediction are vital to establishing capable traffic simulation 
models [6] to support numerous downstream tasks.  

Current research in this field can be classified into two 
categories: (i) next-location prediction; (ii) joint prediction for 
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the following locations and travel times (or arrival times). 
Since travel time is susceptible to uncertain and random 
factors, achieving accurate performance in the latter task is 
considerably challenging. Affected by this barrier, studies in 
the early stage are always limited in making predictions for 
the next location [4], [10]. However, this strategy cannot offer 
temporal information for traffic managers and travelers, so it 
may not be entirely practical. In addition, because locations 
and travel times are characterized by spatiotemporal patterns, 
the joint prediction can provide an opportunity for mutual 
correction, leading to higher prediction accuracies. Therefore, 
researchers gradually paid their interest in joint prediction 
about individual trajectories [14], [15], but critical limitations 
and barriers still lie, such as:  

● Conventional studies always regarded the trajectory 
prediction task as the time-series prediction, so 
several recurrent neural networks (RNN) were 
directly applied [11]. However, vehicle trajectories 
reflect the mobility process in discrete spatial 
locations with discrete time stamps, such as 
intersections and road segments. So, this prediction 
task differs from classical time-series forecasting 
(e.g., traffic flow predictions). Although sequence 
characteristics are present in vehicle trajectories, we 
should adopt a capable approach that accommodates 
their discrete features, rather than directly applying 
traditional time-series prediction methods.  

● Many deep learning models have been developed to 
improve trajectory prediction accuracies, but current 
studies mainly belong to point prediction, especially 
for travel times. It means that it only outputs a single 
value for the next travel time. However, travel times 
in urban road networks always express extreme 
uncertainty [16], so the predicted single value cannot 
represent the actual travel time accurately and 
reliably. Hence, probabilistic forecasting may be a 
potential solution to address this issue.  

● In trajectory prediction, applications of conventional 
models are always limited to predicting future 
trajectories. Although several studies conducted 
interpretable analysis from prediction models, these 
efforts are still limited in experimental results 
analysis. Overall, current studies cannot provide 
abundant information to explore future evolution 
patterns of network-scale traffic flows. This problem 
is crucial in real-world traffic management but still 
lacks effective solutions. Therefore, how to generate 
future vehicle mobilities from these well-trained 
prediction models still needs further exploration.  

Motivated by these limitations, this study attempts to model 
individual trajectories as the temporal point process (TPP) and 
extract the spatiotemporal dependencies. To learn the mobility 
patterns of individual vehicles, we propose the TrajTPP model 
via the effective integration of TPP and deep learning models. 
In this method, we first utilize the spatial and temporal 
attention mechanisms to capture the sequence patterns, 

respectively. Afterwards, a spatiotemporal gated recurrent unit 
(STGRU) is proposed to integrate the temporal and spatial 
correlations dynamically. Meanwhile, a gated residual 
attentive network (GRAN) is also developed to integrate these 
dynamic features with static information (e.g., vehicle type, 
day of the week, etc.). Finally, an intensity-free learning 
strategy is used to make probabilistic forecasting for the travel 
time. To further involve historical traffic information in the 
location prediction task, we also define a prior transition 
probability from historical travel behaviors and integrate it 
with learned context vectors. Overall, the primary 
contributions of this study are listed below.  

● This study learns vehicle trajectories as the temporal 
point process (TPP) and proposes a TrajTPP model to 
make probabilistic predictions for the next location 
and travel time. TPP is employed to describe vehicle 
mobility patterns among discrete spatial locations, 
and several novel modules are further proposed and 
integrated to enhance learning capabilities.  

● We develop a multi-view spatiotemporal learning 
framework to extract sequence patterns of vehicle 
trajectories. The STGRU model is proposed to 
effectively explore the interactions between spatial 
and temporal correlations, and GARN is designed to 
incorporate dynamic and static features.  

● In addition to accurately predicting the next location 
and travel time, we further propose a vehicle 
trajectory simulation strategy using TrajTPP. This 
enables the well-trained TrajTPP model to serve as an 
effective simulator for generating spatiotemporal 
travel patterns of network-scale vehicle mobility.  

● Extensive experiments from the real-world dataset in 
Changsha, China, reveal the superior performance of 
TrajTPP over several advanced trajectory prediction 
methods and neural TPPs. Meanwhile, the sampling 
experiment demonstrates its reliable capability in 
trajectory generation. We also show its superiority on 
the latest open-source benchmark in next-location 
prediction in the Appendix.  

The remainder of this paper goes as follows. Section Ⅱ 
briefly overviews the previous studies in trajectory prediction. 
We detailly describe the proposed TrajTPP model and its 
components in Section Ⅲ. Experiment results from different 
aspects are summarized in Section Ⅳ. Finally, we conclude 
this work and provide outlooks for future studies in Section Ⅴ.  

II. RELATED WORKS 
Trajectory prediction is a critical component in numerous 

LBS applications. In recent decades, numerous studies have 
been conducted in this field. According to prediction modes, 
current works can be classified into next location and joint 
predictions. The significant difference between these two 
categories is that the latter focuses on the simultaneous 
prediction of the next location and corresponding travel time. 
Representative studies and evolution trends in these two fields 
are summarized in the following subsections.  
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A. Next Location Prediction  

As its name says, location prediction aims to predict future 
locations of an individual traveler or vehicle. Hence, exploring 
the hidden patterns in previous locations is the key step to 
achieving accurate forecasting [17]. This field arose in the 
early stage of this century, with pioneering scholars initially 
working to solve this problem using statistical models. From 
then on, Markov-based models have become the most 
influential method in the next-location prediction. Ashbrook & 
Starner [10] generated critical locations from GPS records by 
k-means clustering algorithm, and then a Markov chain (MC) 
model was proposed to forecast future movements. More 
details and recent developments about MC-based mobility 
prediction models can be found in [18], [19]. In addition to 
these Markov-based models, other probabilistic graphical 
models were also adopted in location prediction. For instance, 
Pathirana et al. [20] proposed a Robust Extended Kalman 
Filter (REKF) to predict the next location in the Global 
System for Mobile Communications network. Additionally, 
Monreale et al. [21] proposed a variant of the decision tree to 
estimate the next location, named T-pattern Tree.  

However, limited by their simple structure, these statistical 
prediction methods may encounter challenges in prediction 
performance and generalizability. In the era of big data, deep 
learning methods gradually won the favor of researchers in 
numerous engineering problems [22]–[24]. Since the previous 
locations can be characterized as sequence data, the recurrent 
neural network (RNN) and its variants, i.e., long short-term 
memory (LSTM) and gated recurrent units (GRU), are widely 
applied in this field. For example, Liu et al. [4] combined the 
distance information with the conventional RNN model and 
proposed a spatial-temporal recurrent neural network (ST-
RNN) for next-location prediction. Besides RNNs, Chen et al. 
[6] designed a convolutional embedding model (CEM) in 
next-location prediction. Liang & Zhao [12] considered the 
movement directions and combined it with a Seq2Seq model 
for vehicle trajectory prediction, named NetTraj. More 
recently, Chen et al. [25] introduced the multi-context features, 
such as individual preferences and social relations, and a 
graph neural network (GNN)-based model was proposed to 
predict the next location. Hong et al. [26] introduced the 
Transformer model into trajectory prediction and proposed a 
multi-head self-attentional neural network (MHSA) for the 
next-location prediction.  

B. Joint Prediction 
The location prediction task mentioned above focused 

solely on predicting the following locations, disregarding the 
corresponding travel times. However, incorporating future 
travel times could benefit both travelers and traffic managers, 
leading to a higher-quality traffic system. Following this idea, 
several efforts have been made in this field. Gidófalvi & Dong 
[14] employed an inhomogeneous continuous-time Markov 
model to predict the departure time and the next location of 
individual travelers. Zhao et al. [27] treated trip information as 
a tuple (t, o, d) and proposed a Bayesian n-gram model to 

make joint predictions for the start time (t), origin (o), and 
destination (d). Mo et al. [28] designed an input-output hidden 
Markov model (IOHMM) to make simultaneous predictions 
for the time and destination of the next trip. Afterwards, deep 
learning models are also widely adopted in joint prediction. 
Krishna et al. [15] developed a hybrid LSTM and a cascaded 
LSTM to predict the next mobility activity and the 
corresponding duration time. Sun & Kim [11] combined the 
self-attention mechanism with LSTM to predict the next 
location and travel time of individual vehicles.  

Although these deep learning models can enhance the 
accuracies in trajectory prediction, the uncertainty in travel 
time is still unsolved. Actually, travel time in urban road 
networks is affected by numerous factors, so it is always 
characterized by uncertainty. However, current studies in 
trajectory prediction mainly focus on point prediction for time 
prediction, which means they only output a single value for 
the next travel time. Therefore, this type of prediction cannot 
explore the uncertainty in travel times, making prediction 
results inaccurate and unreliable. Instead of point prediction, 
probabilistic forecasting for the next location and travel time 
might be more suitable for this task. The temporal point 
process (TPP) model has been demonstrated as a powerful tool 
for modeling event sequences and making probabilistic 
forecasting. Currently, several researchers have applied the 
TPP-based models in traffic congestion modeling and 
prediction [29], [30]. Meanwhile, a few studies also 
introduced TPP into mobility prediction. Du et al. [31] 
proposed an RNN-based TPP model, named recurrent masked 
temporal point process (RMTPP), and evaluated it on the taxi 
pickup dataset in New York City. Additionally, Yang et al. [32] 
further developed a recurrent spatio-temporal point process 
(RSTPP) to make probabilistic forecasting for the check-in 
time. Wu et al. [33] introduced the attention mechanism into 
neural TPP models and proposed an attentive marked temporal 
point process (AMTPP) for individual mobility prediction in 
urban metro systems.  

However, these previous studies focus on using deep 
learning methods to separately learn temporal and spatial 
dependencies in previous trajectories, ignoring the interactions 
between these two features. Meanwhile, the correlations 
between dynamic information (i.e., previous locations and 
travel times) and static factors (e.g., time of day, vehicle type, 
etc.) still need further exploration. Furthermore, these studies 
are also limited in the prediction task, and the capability to 
analyze future evolution patterns is still overlooked.  

III. METHODOLOGY  
In this section, we first provide the problem formulation to 

introduce the background and basic settings of our model. 
Then, we detail the framework and components from Sections 
Ⅲ.B to Ⅲ.F. Afterwards, a sampling-based simulation strategy 
is further proposed in Section Ⅲ.G.  

A. Problem Formulation  
Table Ⅰ shows the data samples of the involved LPR dataset, 
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where each row represents a vehicle record at an intersection. 
Supposing 𝑡!" and 𝑚!

" denote the arrival time and location of 
the 𝑗th record of vehicle 𝑘, the prediction task in this study can 
be concluded as: given a sequence of trajectory records of 𝑘th 
vehicle as 𝒯#" = {(𝑡$" , 𝑚$

"), (𝑡%" , 𝑚%
"), . . . , (𝑡#" , 𝑚#

")}, the goal is 
to simultaneously predict the next location 𝑚#&$

"  and arrival 
time 𝑡#&$" .  

Generally, prediction for the arrival time can be 
equivalently transformed to inter-time (i.e., travel time) 
forecasting, so we will employ these terms interchangeably 
throughout the entire paper. In this way, the prediction task 
can be mathematically formulated by Eq. (1) and Eq. (2). 
Here, 𝜏!" = 𝑡!" − 𝑡!'$"  denotes the travel time between the 𝑗th 
and the last location, and ℱ(⋅) represents the mapping function 
to estimate the probabilistic distributions of the next location 

and travel time. Therefore, 𝑝(𝜏#&$" , 𝑚#&$
" |ℋ#

") can be regarded 
as the conditional probability distribution of the next travel 
time 𝜏#&$"  and location 	𝑚#&$

"  based on ℋ#
" , where ℋ#

" 
denotes the extracted features from 𝒯#".  

𝒯#" = 56𝑡!" , 𝑚!
"7:	𝑗 = 1,2, … , 𝑛, 𝜏!" > 0? (1) 

𝑝(𝜏#&$" , 𝑚#&$
" |ℋ#

") = ℱ(𝒯#") (2) 
It is worth noting that the length of trajectory (i.e., 𝑛) is 

variable in different trajectories, instead of using a predefined 
parameter as in several previous studies [12]. Additionally, we 
also introduce a sliding window strategy to make predictions. 
Taking a trajectory with 𝑛  records as an example, the 
prediction mode can be abstractly summarized in Fig. 1, where 
the individual trajectory with length 𝑛  can be regarded as 
splitting into 𝑛 − 1 sub-trajectories.  

B. Framework  
This study aims to use the TPP-based framework to address 

trajectory prediction. According to the definition by Shchur et 
al. [34], neural TPP always follows the following modeling 
steps:  

(1) Encode the event sequence 𝒯#" into a feature vector 𝑦#".  
(2) Extract the context vector ℋ#

" by exploring the temporal 
dynamics in 𝑦#".  

(3) Parameterize the conditional distribution over the next 
event 𝑝(𝜏#&$" , 𝑚#&$

" |ℋ#
").  

Following this framework, we propose the TrajTPP model 
and illustrate its structure in Fig. 2. As shown in this figure, 
our model is composed of several critical components: (1) 
encode input location and travel time sequences into high-
dimensional latent space and use attention mechanisms to 
learn the corresponding dependencies; (2) a spatiotemporal 
feature fusion block, which proposes the STGRU model to 
incorporate the extracted temporal and spatial features and 
employs a global attention mechanism to enhance long-term 
modeling capability; (3) an external feature fusion block based 
on the proposed GRAN model to integrate the dynamic 
features with static information; (4) an intensity-free learning 

TABLE Ⅰ 
DATA SAMPLES OF THE LPR DATASET 

Index License plate Collection time Location index 

1 21030badd 2022-10-01 18:44:52 7 
2 21030badd 2022-10-01 18:47:21 17 
3 21030badd 2022-10-01 18:48:42 30 
4 951f8dcc44 2022-10-01 23:11:30 99 
… … … … 

 

 
Fig. 1. Description of the sliding window strategy.  
 

 
Fig. 2. Framework of TrajTPP model.  
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block relied on the log-norm mixture distribution to estimate 
distributions of the next travel time; (5) next-location 
prediction module, where we define a prior transition 
probability and integrate it with the learned context vectors to 
model the categorical distribution of the next location. In this 
figure, the “RG” and “UG” refer to the reset gate and update 
gate. Overall, the TrajTPP model can be regarded as an 
effective integration of conventional TPP and advanced 
spatiotemporal learning modules. All the components are 
described in detail in the following subsections.  

C. Sequence Data Modeling  
1) Feature Encoding  

For each vehicle, its trajectory data 𝒯#" in this study records 
the continuous transformation patterns among different 
intersections. Therefore, it has typical characteristics of 
sequence data. More specifically, the trajectory data includes 
temporal patterns (i.e., travel time sequence) and spatial 
patterns (i.e., location sequence). Here, we represent the travel 
time sequence and location sequence as 𝑠( ∈ ℝ# and 𝑠) ∈ ℝ#, 
where 𝑛 denotes the trajectory length, and extract the hidden 
patterns from temporal and spatial dimensions, respectively.  

It is noted that each element in the travel time sequence and 
location sequence is a scaler value. To fully explore the hidden 
information, it is necessary to encode them into higher-level 
features (i.e., ℎ( ∈ ℝ#×+! and ℎ) ∈ ℝ#×+") by a transformation 
layer. For the travel timess sequence 𝑠(, all the elements are 
continuous, so we simply employ a fully-connected network 
(FCN) to enhance expressive capability. However, the linear 
transformation is unsuitable for 𝑠) , because locations should 
be treated as discrete categorical variables. Currently, there are 
two types of methods to represent categorical features in LBS-
based prediction, i.e., one-hot [11] and Embedding [3], [6]. 
Compared to one-hot encoding, the Embedding strategy can 
map encoding results into arbitrary dimensions, reducing 
dimensionality and enabling further exploration of correlations 
between different categories. This means that similar 
intersections can be placed closer together in the embedding 
space. Considering these advantages, we adopt Embedding to 
transform location sequence 𝑠) into context vector ℎ).  
2) Spatial and Temporal Attention Mechanism 

After the feature transformation, it is essential to explore the 
hidden patterns in each context vector. To achieve this goal, 
temporal and spatial attention mechanisms are applied to ℎ( 
and ℎ), respectively. The self-attention mechanism [35] is the 
most widely used method in numerous sequence modeling 
tasks. Continuous efforts have been conducted to further 

improve the performance and efficiency of the conventional 
self-attention mechanism, e.g., Combiner [36], Interpretable 
multi-head attention mechanism [37], etc. Among these 
methods, the gated attention unit (GAU) [38] is a novel variant 
of the self-attention mechanism, and it shows significant 
superiority in effectiveness and learning capability. Especially, 
its well-designed structure can avoid the multi-head 
operations, making significant improvement in the 
computation cost. Therefore, we employ this method to 
implement the spatial and temporal attention mechanism. In 
this way, the sequence correlations in the travel time and 
location sequence can be extracted adaptively.  

Fig. 3 shows the structure of the GAU model. Overall, it 
still inherits the “self” operation (i.e., 𝑄 , 𝐾 , 𝑉 ) in the 
conventional self-attention mechanism. Here, we take the 
context vector of travel time sequence ℎ(  as an example to 
describe the calculation process of this model. As shown in 
Eq. (3), a LayerNorm operation [39] (i.e., LN(⋅)) is firstly 
applied to the input data to enhance training stability. 
Afterwards, three parallel FCN layers are employed to 
transform the context vectors into different representation 
subspaces, which is shown in Eq. (4)-(6). In these equations, 
𝑊  and 𝑏  represent the corresponding weight matrices and 
bias, and 𝜎(∙) denotes the activate function. 

ℎN( = LN(ℎ() (3) 
𝑈 = 𝜎(ℎN(𝑊, + 𝑏,) (4) 
𝑉 = 𝜎(ℎN(𝑊- + 𝑏-) (5) 
𝑍 = 𝜎(ℎN(𝑊. + 𝑏.) (6) 

Afterwards, as shown in Eq. (7)-(8), a “scale-offset” 
strategy is adopted to limit the learned attention weights to a 
specific range and eliminate the impact of numerical scales. 
This kind of dimensionless strategy is useful in enhancing 
training stability and performance. Here, a linear combination 
is employed to implement this strategy, where the 𝛾 and 𝛽 are 
trainable parameters to control the boundary. Based on these 
two context vectors 𝑄  and 𝐾 , the attention weight matrix 𝐴 
can be obtained through Eq. (9). In this equation, relu%(⋅) 
represents the square ReLU activate function (i.e., [relu(⋅)]%) 
[40], and 𝑏  denotes the bias. To avoid future information 
leakage, 𝐴 is constrained to be a lower triangular matrix.  

𝑄 = scale_offset(𝑍) = 𝛾/𝑍 + 𝛽/ (7) 
𝐾 = scale_offset(𝑍) = 𝛾"𝑍 + 𝛽" (8) 

𝐴 = relu%(𝑄𝐾 + 𝑏) (9) 
Finally, as shown in Eq. (10), the attention weight matrix 𝐴 

is incorporated with 𝑉  by multiplication, and this operation 
can be regarded as a “gate” to control information interactions. 
Here, ⊙ denotes the element-wise production. Meanwhile, a 
residual connection (i.e., ℎ(𝑊0) is further applied to enhance 
the stability and convergence. Similarly, we also employ this 
attention mechanism on location context vector ℎ) to explore 
the spatial correlations.  
𝑂 = (𝑈⊙𝑉d)𝑊1 + ℎ(𝑊0 = (𝑈⊙𝐴𝑉)𝑊1 + ℎ(𝑊0 (10) 

3) Spatiotemporal Gated Recurrent Unit  
The above subsection adopts attention mechanisms to 

extract the corresponding correlations in the travel time and 
 

Fig. 3. Structure of the GAU model.  
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location sequences, but the hidden spatial and temporal 
correlations are separately addressed, which means there is a 
lack of interaction between these features. Meanwhile, 
conventional neural TPPs always use RNN-based structures to 
enhance the autoregressive modeling performance [31]. 
However, in these RNN-based models, the previous location 
sequences are mainly concatenated with the corresponding 
travel times as input data. According to vehicle mobility 
patterns, the arrival locations and times are highly related, so 
these structures are challenging to capture the hidden 
dependencies between these two sequences, leading to limited 
capability in sequence modeling. To address this issue, this 
study proposes a spatiotemporal gated recurrent unit (STGRU) 
model to effectively fuse these correlations.  

The proposed STGRU is motivated by GRU, which has 
been widely used in numerous traffic prediction tasks. 
Supposing 𝑋 = {𝑥$, 𝑥%, … , 𝑥#}  represents the input features, 
the mathematical formulation of the conventional GRU can be 
summarized as follows.  

𝑅( = sigmoid(𝑥(𝑊20 +𝐻('$𝑊30 + 𝑏0) (11) 
𝑍( = sigmoid(𝑥(𝑊2. +𝐻('$𝑊3. + 𝑏.) (12) 

𝐻m( = tanh(𝑥(𝑊23 + [𝑅( ⊙𝐻('$]𝑊33 + 𝑏3) (13) 
𝐻( = 𝑍( ⊙𝐻('$ + (1 − 𝑍() ⊙𝐻m( (14) 

Here, the reset gate (i.e., 𝑅() and update gate (i.e., 𝑍() are 
used to control the information interactions between previous 
and current input features. Similarly, 𝑊  and 𝑏  in these 
equations denotes the trainable weighted matrices and bias. 
However, the conventional GRU model only involves the 
temporal context, and there is no interaction between temporal 
and spatial information.  

To address this problem, we propose the STGRU model and 
illustrate its structure in Fig. 4. Overall, it first separately 
inputs the location sequences (𝑋()) = {𝑥$

()), 𝑥%
()), … , 𝑥#

())}) and 
the travel time sequences (𝑋(() = {𝑥$

((), 𝑥%
((), … , 𝑥#

(()}) into two 
different reset and update gates to generate the corresponding 
hidden features, i.e., 𝑅(

()), 𝑅(
((), 𝑍(

()), and 𝑍(
((). Afterwards, we 

further utilize a gated mechanism [41] to integrate temporal 
features with spatial features as follows.  
𝑤0 = sigmoid(𝑅(

())𝑊0(")0̃ + 𝑅(
(()𝑊0(!)0̃ + 𝑏0̃) (15) 

𝑅N( = 𝑤0 ⊙𝑅(
()) + (1 − 𝑤0) ⊙ 𝑅(

(() (16) 

𝑤. = sigmoid(𝑍(
())𝑊.(").7 + 𝑍(

(()𝑊.(!).7 + 𝑏.7) (17) 

𝑍N( = 𝑤. ⊙𝑍(
()) + (1 − 𝑤.) ⊙ 𝑍(

(() (18) 
The proposed gated mechanism can be regarded as an 

adaptive combination of spatial and temporal information, 
while ensuring the sequence modeling capability. Specifically, 
it first calculates a weight (i.e., 𝑤0 , 𝑤. ∈ [0, 1]) and uses it to 
integrate different context vectors. After this step of hidden 
feature fusion, we also apply this gated mechanism on the 
input data 𝑥(

())  and 𝑥(
(()  to generate the comprehensive input 

representation 𝑥q(. Then, all the fused features are input to the 
following equations to update the current hidden states.  
𝐻r( = tanh(𝑥q(𝑊2738 + [𝑅N( ⊙𝐻('$]𝑊338 + 𝑏38) (19) 

𝐻( = 𝑍N( ⊙𝐻('$ + (1 − 𝑍N() ⊙𝐻r( (20) 
By these operations, the proposed STGRU model can 

further explore the spatiotemporal dependencies among the 
input locations and travel times. However, since it still inherits 
the structure of GRU, a common problem in the conventional 
RNNs also arises, i.e., its long-term modeling capability is 
limited. Therefore, the extract context vector {𝐻$, 𝐻%, … , 𝐻#} 
is further input to a global attention mechanism layer to 
enhance long-term learning performance. Here, we also select 
GAU to implement this attention mechanism.  

D. External Feature Extraction  
The deep learning modules mentioned above mainly aim to 

extract the spatiotemporal dependencies from dynamic 
features, i.e., previous locations and travel times. In addition 
to these dynamic features, other static factors also play a vital 
role in trajectory prediction [3]. Thus, we further introduce 
three critical external factors, i.e., start hour, day of the week, 
and vehicle type, to reflect collective travel patterns and 
enhance trajectory prediction performance. For each trip, these 
factors do not change over time, so we name them static 
features. According to their definitions, since these static 
factors are categorical variables, the Embedding strategy is 
also employed to encode them into high dimensions.  

 
Fig. 4. Structure of the proposed STGRU model.  
 

 
Fig. 5. Structure of the proposed GRAN model.  
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To improve the integration performance between dynamic 

and static features, based on the gated residual network (GRN) 
[37], we further propose a gated residual attentive network 
(GRAN). The framework of the proposed GRAN model is 
shown in Fig. 5. Supposing 𝐻 ∈ ℝ#×+%  denotes the dynamic 
features (i.e., context vectors from the global attention layer), 
where 𝑛  and 𝑑3  represent trajectory length and hidden 
dimensions, respectively, the calculation process of the 
proposed GRAN model is shown below. In these equations, 
𝐶 ∈ ℝ+& denotes the context vector of external features after 
Embedding, and ELU(⋅)  denotes the exponential linear unit 
(ELU) function [42].  

𝜂$ = ELU(𝐻𝑊$,$ + 𝐶𝑊$,% + 𝑏$) (21) 
𝜂% = 𝜂$𝑊% + 𝑏% (22) 

ℋ# = GRAN(𝐻, 𝐶) = LN(𝐻 + GAU(𝜂%)) (23) 
Here, ℋ# is the aggregated features that will be input to the 

probabilistic distribution estimation module. In Eq. (21), this 
method first utilizes a weighted combination of dynamic 
features (i.e., 𝐻 ) and static features (i.e., 𝐶 ), and the ELU 
function is employed to enhance nonlinear learning capability. 
Then, a linear layer without activation function in Eq. (22) is 
further utilized for feature extraction. Afterwards, a gated 
layer (i.e., GAU in Eq. (23)) is applied to integrated context 
vectors and further explores the sequence patterns in the fused 
features. Overall, relying on these equations, this model can 
effectively integrate the dynamic features with static factors, 
generating a more comprehensive representation of the 
previous travel patterns.  

E. Probabilistic Distribution Estimation  
1) Distribution of the Next Travel Time 

Based on the extracted features from these deep learning 
modules, a TPP model is employed to estimate the 
probabilistic distribution of the next travel time. TPP is a 
capable tool to explore the temporal dynamics in discrete 
events, and it has been applied in numerous applications, 
including ambulance demand estimation [43], earthquake 
forecasting [44], etc. Conventional TPP methods always suffer 
limitations in flexibility and tractability to model the complex 
intensity function. Therefore, following the intensity-free 
learning strategy of TPP [45], TrajTPP aims to directly learn 
the probability density function (PDF) of the next travel time 
by a log-norm mixture distribution. Eq. (24) shows the 
formulation of log-norm mixture distribution. Here, 𝝎 ∈ ℝ:, 
𝝁 ∈ ℝ:, and 𝝈 ∈ ℝ: denote the weights, means, and standard 
deviations of this mixture distribution.  

𝑝(𝜏|𝝎, 𝝁, 𝝈) = ~
𝜔;

𝜏𝜎;√2𝜋
exp(−

(log 𝜏 − 𝜇;)%

2𝜎;%
)

:

;<$

 (24) 

The intensity-free learning strategy learns these parameters 
from the aspect of neural density estimation. Specifically, it 
employs three parallel FCN layers with 𝑀	 hidden units, and 
then different activation functions are utilized to transform the 
learned context vectors to the unique constraint scope of each 
parameter. For instance, since weights in the mixture 
distribution should follow ∑ 𝜔;:

;<$ = 1  and 𝜔; ≥ 0 , the 

softmax(∙) activation function is employed in Eq. (25). In this 
way, probabilistic forecasting for the next travel time can be 
achieved by the estimated distribution.  

!
𝝎 = softmax(ℋ𝑛𝑊𝜔 + 𝑏𝜔)
𝝈 = exp(ℋ𝑛𝑊𝜎 + 𝑏𝜎)
𝝁 = ℋ𝑛𝑊𝜇 + 𝑏𝜇

 (25) 

2) Distribution of the Next Location 
Generally, the principle of the next-location prediction task 

can be described as follows: given the current location and the 
transition probabilities to all other locations, the objective is to 
estimate the most probable next location. Therefore, we first 
apply a FCN layer on ℋ#  to generate the learned transition 
probabilities of the input sequence as 𝐻# ∈ ℝ#×A, where 𝑁 is 
the number of intersections. Here, each row in this transition 
probability matrix, i.e., ℎ#; ∈ ℝA , denotes the transition 
probability from the 𝑛 th location of 𝑚 th vehicle to all the 
candidate locations.  

In addition to this learned transition probability, we can also 
extract several prior transition information from the historical 
trajectory dataset. For instance, when considering an 
intersection (i.e., A) with two downstream intersections, 
namely B and C, if the historical transition volumes from A to 
B are significantly higher than from A to C, we can infer that 
intersection B is more probable to be the subsequent location 
after intersection A. Following this opinion, we involve the 
prior volume transition probability to reflect the historic travel 
behaviors, and a fusion module is further developed to 
integrate this feature with the learned transition probability.  

To achieve this goal, we first extract traffic volumes 𝑣B!
C  

from the historical trajectory dataset, which denotes the 
number of vehicles from intersection 𝑖  to 𝑗 directly. Then, a 
normalization operation is utilized to generate the prior 
transition probability 𝑝B!

C , i.e., 𝑝B!
C = 𝑣B!

C/∑ 𝑣B"
C

"∈ℕ' , where ℕB 
denotes the potential downstream intersections of node 𝑖 . 
Hence, 𝑝B!

C  can reflect the empirical likelihood between these 
intersections. To keep consistency with the learned transition 
probability ℎ#" , we denote the transition probability vector 
from the 𝑖th location of vehicle 𝑘 as 𝑤B" ∈ ℝA.  

Moreover, when predicting the next location 𝑚#&$
"  based on 

the input sequence 𝒯" = {(𝑡$" , 𝑚$
"), (𝑡%" , 𝑚%

"), . . . , (𝑡#" , 𝑚#
")} , 

we can obtain 𝑛 prior transition probability vectors (i.e., 𝑤$", 
𝑤%" , … , 𝑤#"). To fully explore the hidden temporal patterns and 
extract a more expressive probability representation, we first 
concatenate these vectors to generate a prior transition 
probability matrix 𝑊#" ∈ ℝ#×A, and a GRU layer with hidden 
dimension 𝑁 is applied to generate the hidden feature 𝑊r#" ∈
ℝ#×A. Here, the last row in 𝑊r#", expressed as 𝑤�#" ∈ ℝA, can 
be viewed as the transition probability from the current 
location (i.e., 𝑚#

") to all the candidate intersections. Finally, to 
incorporate this prior information with the learned context 
vector ℎ#", a fusion strategy [46] is applied as follows.  

𝑧3 = sigmoid(ℎ#" ⊙𝑤�#") (26) 
ℎN#" = softmax(𝑧3 ⊙ℎ#" + (1 − 𝑧3) ⊙𝑤�#") (27) 
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In Eq. (26), by using sigmoid(∙) as the activate function, we 
aim to learn an element-wise weight matrix 𝑧3 , with all the 
elements in the range of [0, 1]. Then, Eq. (27) is utilized to 
make a linear combination between the prior transition 
probability 𝑤�#" and the learnable context vector ℎ#". The final 
output feature ℎN#" is regarded as the categorical distribution for 
𝑚#&$
" , mathematically expressed as: 𝑚#&$

" ~Categorical(ℎN#").  

F. Loss Function 
The proposed TrajTPP method belongs to the generative 

models, so the negative log-likelihood (NLL) is utilized as the 
loss function for model training. This metric is shown in Eq. 
(28), where 𝐿 denotes the total number of trajectories, and 𝑛B 
represents the length of 𝑖th trajectory. Meanwhile, 𝑝∗(𝜏!B) and 
𝑝∗(𝑚!

B)  denote the probabilities that 𝜏!B  and 𝑚!
B follow the 

corresponding estimated distributions. Therefore, the first term 
and second term indicate the modeling performance of travel 
times and locations, respectively. 

NLL = −
1

∑ 𝑛BG
B<$

~~[log 𝑝∗6𝜏!B7+ log 𝑝∗(𝑚!
B)]

#'

!<$

G

B<$

 (28) 

G. Sampling-based Simulation Strategy 
Compared to conventional trajectory prediction methods, 

TPP stands out as a generative model, which extends its utility 
beyond basic prediction tasks. Its generative capability allows 
it to simulate the trajectories of numerous vehicles. In other 
words, we can use the well-trained TrajTPP model to simulate 
the spatiotemporal evolution patterns of vehicle mobility in 
urban road networks. Nowadays, data-driven trajectory 
simulation has become an important topic in human mobility 

analysis [47], playing a critical role in urban planning and 
traffic management. To address this issue cost-effectively 
using TrajTPP, we propose a sampling-based simulation 
strategy for trajectory generation based on the well-trained 
TrajTPP model.  

Generally, there are two common approaches to generating 
new event sequences from TPPs, i.e., sampling from scratch 
and conditional sampling [48]. The difference between these 
two modes is that the former starts generation from 𝑡 = 0 and 
knows nothing about previous events. In contrast, conditional 
sampling can be viewed as simulations for future trajectories 
based on previous 𝑘 records.  

Algorithm 1 summarizes the generation process of the first 
type. Since this study involves three external features in 
trajectory prediction, these features are unavailable for the 
scratch simulation. Thus, we first utilize three categorical 
distributions to fit the corresponding external features from the 
training and validation sets. For instance, if 𝑉  denotes the 
categorical distribution of vehicle types, we can sample a 
vehicle type for 𝑙 th simulation by 𝑣)~Categorical	(𝑉) . 
Similarly, the start hour 𝑠)  and day of week 𝑑)  for each 
sequence can be generated in a similar way. Meanwhile, since 
no prior location information is involved in this type of 
simulation, we sample an initiate intersection according to the 
categorical distribution of start locations from the historical 
trajectory dataset. Additionally, to better capture the real-world 
mobility patterns, we also generate a 𝑇;H2  for each iteration 
from empirical distributions of historical end times.  

It is worth noting that this strategy is also applicable for 
conditional sampling, although it relies on prior knowledge 
about previous trajectories. In this case, the external features 

Algorithm 1. Sampling-based simulation strategy for future vehicle mobility generation from scratch.  
Input: Maximum time 𝑇;H2, number of simulations 𝑁, number of trips 𝐿.  
Output: Sequence of simulated arrival times and locations 𝒯 = {𝒯$,$, … , 𝒯$,A; … ; 𝒯G,$, … , 𝒯G,A}.  
1. for 𝑙 = 1: 𝐿 do 
2.   for 𝑛 = 1:𝑁 do 
3.     Generating external features (i.e., 𝑣#) , 𝑠#) , 𝑑#) ) and initiate location 𝑚#,I

)  from categorical distributions.  
4.     Set 𝑡̃I = 0, 𝑖 = 0, and ℎI ← TrajTPP{[𝑡#,I) , 𝑚#,I

) ; 𝑣#) , 𝑠#) , 𝑑#) ]}. 
5.     while 𝑡̃B < 𝑇;H2 do 
6.        Compute parameters 𝝎B&$, 𝝈B&$, 𝝁B&$ for log-norm mixture distribution based on ℎB. 

7.        Sample the next travel time from the log-norm mixture through �
𝔃 ∼ Categorical(𝝎B&$)
𝜀 ∼ Normal(0, 1)

𝜏B&$ = exp	(𝝈B&$J𝔃 ⋅ 𝜀 + 𝝁B&$J𝔃)
. 

8.        Sample the next location 𝑚� B&$ ∼ Categorical6PTP(ℎB)7. 
9.        Compute the next arrival time 𝑡̃B&$ = 𝑡̃B + 𝜏B&$. 
10.        if 𝑡̃B&$ < 𝑇;H2 do 
11.           Record the arrival time 𝑡#,B&$) ← 𝑡̃B&$ and location 𝑚#,B&$

) ← 𝑚� B&$. 
12.           Set ℎB&$ ← TrajTPP([𝑡#,$) , . . . , 𝑡#,B&$) ;𝑚#,$

) , . . . , 𝑚#,B&$
) ; 𝑣#) , 𝑠#) , 𝑑#) ]). 

13.           Set 𝑖 ← 𝑖 + 1. 
14.        end if 
15.     end while 
16.     𝒯),# = {6𝑡#,$) , 𝑚#,$

) 7, 6𝑡#,%) , 𝑚#,%
) 7, … , (𝑡#,B	) , 𝑚#,L

) )}. 
17.   end for 
18. end for 
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should be pre-known, so we can directly input them instead of 
making estimations from categorical distributions (i.e., Step 
3). Additionally, ℎI in this situation should also be set as the 
context vector of the last record.  

Overall, this algorithm can be considered as generating 𝑁 
potential trajectories for each trip, and this process (i.e., from 
Step 2 to Step 17) can be executed in parallel. In each 
simulation process, we iteratively generate the next locations 
and travel times using TrajTPP. Here, all the travel times and 
locations are generated by sampling from the log-norm 
mixture and categorical distributions, respectively. The context 
vector 𝔃 ∈ ℝ: in Step 7 denotes a one-hot vector [45], and the 
PTP(⋅)  operation in Step 8 represents the prior transition 
probability (PTP) fusion module. Afterwards, as shown in 
Step 12, we integrate the current generated location 𝑚#,B&$

) and 
arrival time 𝑡#,B&$)  with previous records to obtain a new 
context vector ℎB&$. The above steps will be repeated until the 
termination condition 𝑇;H2 is satisfied.  

IV. EXPERIMENTS 

A. Experiment Settings 
1) Data Description 

This study employs the license plate recognition (LPR) data 
from Changsha, China, as the case study. The LPR dataset is 
collected by fixed cameras at urban intersections, and it covers 
abundant traffic information such as passing time, license 
plate number, lane number, etc. As shown in Fig. 6a, there are 
112 intersections in the study area, and the collection duration 
of this dataset was collected from October 1, 2022, to October 
31, 2022. To ensure privacy protection, all license plate 
information has been anonymized by assigning a unique index 
to each vehicle. Meanwhile, the detection errors in LPR 
devices may introduce noise in trajectory sequences, leading 
to unreliable predictions. The specific solutions to this 
problem are summarized below.  

● Duplication recognition. If a vehicle is detected by 
the same intersection multiple times within 30 
seconds, we only keep one record and remove others. 

● Missed recognition. The missed recognition of 
license plates may cause vehicle trajectories to be 
incomplete. Considering missed recognition has a 
low occurrence frequency, following the setting in the 
previous LPR-based trajectory prediction study [8], 
only location sequences with occurrence more than 

30 times will be used for further analysis.  
To obtain the consecutive sequences without parking, a 

temporal threshold 𝛿( is first applied to the original trajectories 
of each vehicle. That is, if the inter-time of two consecutive 
records from the same vehicle is longer than 𝛿(, we will split 
them into different trips. Since intersections in this study show 
a dense layout, we set 𝛿( as 15 minutes. Then, following the 
previous study [11], trips within 𝛿M = 5	 intersections will be 
regarded as abnormal trips and removed.  

Existing studies have demonstrated that different types of 
vehicles may express different travel patterns [49], so we also 
involve this critical factor in trajectory prediction. According 
to the involved dataset, there are 4 major types of vehicles, 
i.e., small vehicles, heavy vehicles, small electric vehicles, and 
heavy electric vehicles. Therefore, an Embedding layer is 
employed to encode these vehicle types into high-dimensional 
features. Meanwhile, travel speeds and route choices may also 
exhibit different patterns throughout the day. After the trip 
splitting strategy by 𝛿(, the differences in the collection time 
for the same trajectory are not significant. Thus, for each 
trajectory, we further introduce the temporal information (i.e., 
start hour and day of the week) of the first record into external 
features. Finally, without loss of generality, we randomly 
select 100,000 trips for individual mobility modeling and 
prediction.  
2) Evaluation Metrics  

For the joint prediction of individual trajectories, this study 
focuses on where the next location is and how long the travel 
time will be. Considering the uncertainty in locations and 
travel times, the prediction performance of this task should be 
evaluated from three perspectives:  

(i) Multi-class classification for the next location. Here, we 
employ the Mark NLL (NLL)), accuracy (ACC), F1 score, and 
Recall@5 as metrics. The definition of Mark NLL can be 
obtained from Eq. (28) and serves as a similarity metric for the 
predicted and actual location distribution. Additionally, 
Recall@5 indicates the proportion of relevant locations 
successfully retrieved among the top 5 predicted locations.  

(ii) Point prediction for the next travel time. The mean 
absolute error (MAE) is utilized to evaluate prediction 
performance, and we employ the median of the estimated PDF 
as 𝜏̂B

! to denote the point prediction results.  
(iii) Probabilistic forecasting for the corresponding travel 

time. Three metrics are introduced for evaluation, i.e., Time 
NLL (NLL( ), mean empirical coverage (MEC), and mean 
Pinball loss (MPL). Here, MEC is utilized to measure the 
average empirical coverage percentage. As shown in Eq. (29), 
Pinball loss is employed to evaluate the prediction 
performance of 𝛼 -quantile. In this study, we employ {5%, 
10%, …, 95%} quantile forecast to calculate MEC and MPL.  

PinballN

=
1

∑ 𝑛BA
B<$

~~
𝛼max6𝜏!B − 𝜏̂!,NB , 07+

(1 − 𝛼)max(𝜏̂!,NB − 𝜏!B , 0)

#'

!<$

A

B<$

 
(29) 

For NLL) , MAE, NLL( , MPL, and NLL, a lower value 
indicates higher prediction performance. For the remaining 

 
(a) spatial distribution 

 
(b) traffic volume distribution 

Fig. 6. Distributions of LPR devices and traffic features in 
the study area.  
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metrics, higher values indicate better prediction performance.  
3) Model Setting  

We randomly divide the trajectory dataset into a training set, 
a validation set, and a test set, using a splitting ratio of 60%: 
20%: 20%. The mini-batch training strategy with a batch size 
of 1024 is applied for model training. In the training process, 
the learning rate and regularization are set as 10'O and 10'P, 
respectively. Afterwards, the maximum training epoch is 500, 
and we adopt the early stop strategy on the validation set with 
patience of 20 to avoid overfitting.  

The TrajTPP model is implemented using PyTorch on an 
Ubuntu workstation with RTX 3090 GPU. In this model, we 
set the hidden dimension of the FCN and Embedding layers in 
sequence data modeling to 128. For the log-normal mixture 
distribution, we assign the number of components as 64. As 
mentioned in the data description, there are four types of 
vehicles involved in this study, and an Embedding layer with 
the hidden dimension of 64 is used for feature transformation. 
Similarly, the static temporal information is also encoded by 
Embedding layers with the same dimension. Under these 
settings, the average training time per epoch is about 10 
seconds, so the TrajTPP model can be well trained within 2 
hours on a single GPU.  

B. Baselines  
This study introduces 11 advanced models as baselines. The 

involved baselines range from conventional methods to novel 
neural TPPs. We briefly summarize these baselines as follows.  

● FPMC [50]. In the Factorizing Personalized Markov 
Chains (FPMC) model, the matrix factorization is 
incorporated with Markov chains to predict the next 
location.  

● GRU. In this model, we first employ a GRU layer to 
encode the input travel time and location sequences. 
Then, two FCNs are applied to predict travel time 
and location, respectively.  

● DeepMove [51]. DeepMove combines the attention 
mechanism with recurrent neural networks to make 
forecasting for the next location.  

● HST-LSTM [52]. The Hierarchical Spatial-Temporal 
Long-Short Term Memory (HST-LSTM) model 
integrates the LSTM-based encoder-decoder structure 
with spatial-temporal influence to predict the next 
location.  

● H-LSTM [11]. The Hybrid LSTM (H-LSTM) 
incorporates the LSTM layer with self-attention 
mechanism to predict the next location and travel 
time simultaneously.  

● S-LSTM [11]. Sun & Kim [11] further proposed a 
Sequential LSTM (S-LSTM) model in the joint 
prediction task, which used two separate LSTM 
structures to learn the spatial and temporal 
correlations, respectively.  

● STAN [53]. The Spatio-Temporal Attention Network 
(STAN) developed a bi-layer attention model to 
further explore the non-adjacent and non-consecutive 
relationships in human mobility prediction.  

● RMTPP [31]. The RMTPP model is a pioneering 
effort which bridges the neural networks with 
conventional TPP methods. A GRU-based model is 
employed to capture the temporal dynamics in 
previous trajectories.  

● Exponential [54]. This method employs an 
exponential distribution to model the intensity 
function of TPP. Similarly, it utilizes GRU to explore 
the time-varying patterns.  

● FullyNN [55]. Motivated by the framework of 
conventional neural TPP, the FullyNN model also 
employs the GRU layer to enhance the temporal 
dependency. Afterwards, it proposes a learnable 
cumulative conditional intensity function and designs 
a neural network for parameter estimation.  

● LogNormMix [45]. Shchur et al. [45] proposed an 
intensity-free learning framework for neural TPP 
modeling. It uses the log-norm mixture distribution to 
estimate the inter-times of the next events.  

In the experiments, we employ the open-source urban 
computing package libcity [56] to implement FPMC, 
DeepMove, HST-LSTM, and STAN. In all the TPP-based 
baselines, locations and travel times are regarded as marks and 
inter-times, respectively. Based on this primary setting, we 
employ the deep learning method to estimate the parameters of 
each distribution. Additionally, to further show the superiority 
of spatiotemporal learning modules in TrajTPP, we combine 
these modules with density estimation methods in all the other 
TPP models, named TrajRMTPP, TrajExp, and TrajFullyNN in 
Table Ⅱ.  

C. Prediction Comparisons 
Table Ⅱ summarizes the prediction performance of TrajTPP 

and the selected baselines. Metrics with the best performance 
are marked in bold. According to the prediction principle, 
several baselines only belong to location forecasting, so 
evaluation metrics for travel time prediction are unavailable. 
Meanwhile, we also take 3 vehicles as instances and compare 
their predictions with ground truths by TrajTPP in Fig. 7.  

Overall, several interesting conclusions can be indicated 
from these results.  

● In this table, FPMC reaches the poorest performance 
in the location prediction task. This poor accuracy 
highlights the challenge of capturing spatiotemporal 
dependencies in vehicle trajectories using a simple 
structure. Meanwhile, the future location prediction 
performance of GRU is also unacceptable, indicating 
that it is unsuitable to model the trajectories as time 
series directly. On the other hand, almost all the TPP-
based baselines outperform these basic methods, and 
they can achieve comparable performance with 
advanced deep learning models. It is noticeable that, 
apart from a GRU layer, these TPP-based methods 
lack complex spatiotemporal learning modules. In 
other words, the intensity functions in these TPP-
based baselines can help them to achieve accurate 
predictions, which demonstrates that TPP-based 
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models are capable for the trajectory prediction task.  
● It is worth noting that after fusing with 

spatiotemporal learning modules proposed in this 
study, the prediction accuracies of all the TPP-based 
methods (e.g., TrajRMTPP) are significantly 
improved. Specifically, the improvements of ACC 
and F1-score in these methods approximately 
exceeded 3%, outperforming all the other baselines. 
Meanwhile, the total NLLs mainly decrease by 0.1, 
with the largest decrease exceeding 0.2. This 
phenomenon demonstrates the effectiveness of our 
proposed model in sequence dependency extraction.  

● Among all the baselines, TrajTPP expresses superior 
performance, especially in travel time prediction. It is 
the only model with NLL(  less than 0.90, and this 
metric on TrajTPP is much lower than all the other 

methods. Previous studies have identified the 
uncertainty in travel times [16], increasing the 
difficulties in achieving accurate prediction. As 
illustrated in Fig. 7, TrajTPP can effectively reduce 
this impact by probabilistic forecasting. Although 
time-varying patterns of travel times are highly 
dynamic, the prediction intervals can accurately 
capture these relationships. Furthermore, we also 
evaluate the performance of TrajTPP on the latest 
next-location prediction benchmark [26]. The 
prediction results are summarized in the Appendix, 
and the proposed TrajTPP model still expresses 
superiority over the latest baselines in all the metrics. 
We share the details about the experiment settings 
and results at https://github.com/SunderlandAJ-
1130/TrajTPP.  

TABLE Ⅱ 
PERFORMANCE COMPARISONS OF THE TRAJECTORY PREDICTION TASK 

 Location prediction Travel time prediction NLL NLL) ACC F1-score Recall@5 NLL( MAE MPL MEC 
FPMC  0.475 0.417 0.827 \ \ \ \ \ 
GRU \ 0.617 0.603 0.896 \ 1.187 \ \ \ 
DeepMove \ 0.720 0.714 0.966 \ \ \ \ \ 
HST-LSTM \ 0.724 0.720 0.967 \ \ \ \ \ 
H-LSTM \ 0.640 0.628 0.916 \ 1.186 \ \ \ 
S-LSTM \ 0.626 0.616 0.906 \ 1.068 \ \ \ 
STAN \ 0.531 0.539 0.920 \ \ \ \ \ 
RMTPP 0.804  0.723  0.718  0.967  1.577  1.553  0.793  0.358  2.381  
Exponential 0.802  0.724  0.718  0.967  1.608  1.408  0.778  0.370  2.409  
FullyNN 0.816  0.722  0.716  0.966  1.053  2.024  0.871  0.203  1.869  
LogNormMix 0.833  0.720  0.712  0.964  1.004  0.992  0.385  0.442  1.837  
TrajRMTPP (ours) 0.752  0.745  0.740  0.971  1.580  1.466  0.807  0.372  2.332  
TrajExp (ours) 0.751 0.745  0.740 0.971  1.589  1.332 0.650 0.375 2.340  
TrajFullyNN (ours) 0.755  0.743  0.738  0.970  0.968  2.295  0.953  0.179  1.723  
TrajTPP (ours) 0.751  0.746  0.741  0.970  0.868  0.913  0.356  0.431  1.619  

 

 
(a) travel times of vehicle a 

 
(b) travel times of vehicle b 

 
(c) travel times of vehicle c 

 
(d) locations of vehicle a 

 
(e) locations of vehicle b 

 
(f) locations of vehicle c 

Fig.7. Prediction results in LPR dataset with TrajTPP.  
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Afterwards, it is noted that travel time prediction is a 
component of trajectory prediction, and its performance is also 
highly dependent on the accuracy of the other prediction task, 
i.e., location prediction. For instance, supposing we make an 
extremely accurate prediction for the next travel time via a 
point prediction, this accurate prediction result also seems to 
be useless if the predicted location is wrong. Instead, as 
illustrated in Fig. 8, if we implement probabilistic forecasting, 
the estimated PDF distribution always consists of several 
peaks. In these figures, CDF refers to the cumulative 
distribution function, and the red line denotes the ground truth 
travel time. Therefore, the predicted results can cover more 
potential information than a single value, making the predicted 
results more reliable. Overall, considering the uncertainty [16] 
in travel times, probabilistic forecasting may be a better 
solution for the trajectory prediction task.  

D. Ablation Analysis  
According to the definition in Section Ⅲ, the proposed 

TrajTPP model consists of several crucial components. In the 
above subsections, we have demonstrated its superiority over 
advanced baselines, but the importance of each element is still 
unclear. Thus, we perform an extensive ablation experiment 
for further analysis. Here, we remove each critical component 
from TrajTPP to evaluate the influence of each module. Below 
is a detailed description of these components. 

● w/o GAU. This model removes all the attention 
mechanisms in TrajTPP.  

● w/o GRAN. This model drops the external feature 

learning module in TrajTPP.  
● w/o STGRU. In this model, we replace the STGRU 

layer with the conventional GRU model.  
● w/o PTP. This mode removes the prior transition 

probability (PTP) fusion module and only involves 
the learned context vector for next-location 
prediction.  

In addition, to further evaluate the performance of different 
attention mechanisms in the trajectory prediction task, we also 
employ the widely-used self-attention mechanism, multi-head 
attention mechanism, and the Interpretable multi-head 
attention mechanism [37] to replace the GAU model. To 
distinguish these methods, we name them as -SA, -MHA, -
IMHA, respectively. In the -MHA and -IMHA models, the 
number of heads is set as 8.   

Table Ⅲ presents the experiment results of the ablation 
study from various aspects. After dropping each component, 
the prediction performance of all the sub-models experience 
decrease. It means that all the components are useful to 
improve the prediction performance of TrajTPP. Notably, the 
absence of the GRAN module exhibited the most significant 
reduction in both location and travel time prediction, 
emphasizing the critical role of external feature fusion 
modules in TrajTPP. Meanwhile, this phenomenon also 
indicates that the involved static factors can effectively reflect 
travel behaviors in the urban road network and provide more 
prior knowledge to the TrajTPP model, thereby improving the 
prediction performance. Afterwards, from the comparison 
between the remaining models, all the sub-models have 
experienced a decrease in their prediction accuracy, with w/o 
STGRU showing a larger decline. This phenomenon shows 
that the proposed STGRU model is capable of capturing the 
correlations between previous trajectory and location 
sequences. Meanwhile, this result also indicates that involving 
historical travel patterns is also effective in enhancing 
trajectory prediction performance.  

Furthermore, in the lower half of Table Ⅲ, we utilize three 
widely-used attention mechanisms to replace the GAU in 
TrajTPP. However, the prediction performance shows that all 
of these alternative attention mechanisms will lead to a 
decrease compared to GAU, especially for the naive self-
attention and Interpretable multi-head attention mechanism. 
Moreover, it is noted that prediction accuracies of these two 
models are even lower than the TrajTPP without any attention 

 
(a) PDF of travel time a 

 
(b) CDF of travel time a 

 
(c) PDF of travel time b 

 
(d) CDF of travel time b 

 
(e) PDF of travel time c 

 
(f) CDF of travel time c 

Fig. 8. The estimated PDF and CDF distributions with 
TrajTPP.  

 

TABLE Ⅲ 
PERFORMANCE COMPARISONS OF ABLATION STUDY 

 NLL) NLL( NLL 
TrajTPP 0.751 0.868 1.619 
   w/o GAU 0.762  0.887  1.649  
   w/o GRAN 0.809 0.990 1.799 
   w/o STGRU 0.759 0.884 1.643 
   w/o PTP 0.756  0.878  1.634  
   -SA 0.772  0.902  1.674  
   -MHA 0.759  0.879  1.638  
   -IMHA 0.767  0.906  1.673  
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mechanism (i.e., w/o GAU in this table). Therefore, although 
there are numerous novel types of attention mechanisms, 
variances exist in the learning capabilities across different 
methods, so it is necessary to select a suitable method.  

Overall, among all the combined models, TrajTPP 
consistently achieves superiority, suggesting that integrating 
these factors into trajectory prediction is useful.  

E. Sampling Analysis  
A primary advantage of TrajTPP over conventional 

trajectory prediction methods is that it can simulate evolution 
patterns of future vehicle trajectories via sampling. To 
evaluate the accuracy and reliability, we further conduct a 
sampling experiment on the test set. Here, we adopt both the 
conditional sampling and scratch sampling strategy to generate 
new trajectory sequences. Since the collection times on the 
test set are located in the whole month, the ground truth and 
simulation results are sparsely distributed in the temporal 
dimension. For simplification, we accumulate all the results 
into a single day for better visualization.  

For the conditional sampling, we directly use the external 
features (e.g., vehicle type), initial location, and first collection 
time of each trajectory as prior information for sequence 
generation. On the contrary, for scratch sampling where prior 
information cannot be involved, we begin by estimating the 
categorical distributions of each external feature from 
historical trajectories on the training and validation sets. Then, 
during the simulation process, these categorical distributions 
are used to randomly sample the prior information as external 
features. Therefore, conditional sampling is applicable for 
implementing traffic control measures based on real-time 
vehicle information, and the latter is more useful in long-term 
traffic planning and policy evaluation. For instance, we can 
modify the percentage of small and heavy vehicles to explore 
travel behaviors under different penetration rates of trucks.  

Following these settings, we simulate trajectories 100 times 

and employ average traffic volumes as the evaluation metric. 
Here, the estimated traffic volumes are calculated by the 
generated arrival times and locations. Fig. 9a illustrates the 
traffic flow comparison by TrajTPP. Each data point in this 
figure denotes traffic volumes at a specific intersection. This 
result shows that, for the majority of intersections, the 
simulated volumes can closely align with ground truths, 
indicating that these simulated trajectories can accurately 
capture the actual evolution patterns of network-scale traffic 
flows. Moreover, according to Fig. 9b and Fig. 9c, the 𝑅% for 
these two predicted lines are 0.834 and 0.837, respectively, 
and traffic volumes from scratch sampling are relatively closer 
to the true traffic volumes. This is because scratch sampling 
utilizes the abundant prior information to generate static travel 
information, making it a more comprehensive understanding 
of the actual patterns of vehicle mobility behaviors.  

Furthermore, we also conduct comparisons on time-varying 
characteristics of simulated traffic volumes at urban 
intersections. Here, we employ hourly traffic volumes as 
examples for illustration and display the fitting results among 
all the intersections in Fig. 10a and Fig. 10b, where 𝑅% 
indicates that the conditional sampling can better capture the 
temporal evolution patterns of vehicle mobility. Meanwhile, as 
shown in Fig. 10c and Fig. 10d, we select two intersections as 
examples, and they show that the simulated volumes can 
accurately follow the time-varying trends of ground truth, 
especially during non-peak hours. However, since no real-time 
information is involved in scratch sampling, the simulation 
performance is relatively poorer than conditional sampling. 
Moreover, traffic volumes from sampled trajectories are 
smoother compared with the ground truth. The reason is that 
we sample trajectories 100 times, so the generated traffic 
volumes can be regarded as the average of simulations to 
enhance reliability. In conclusion, these results show that the 
sampling strategy is both effective and accurate in exploring 
future varying patterns in the urban road network.  

 
(a) comparison between simulated and truly volumes 

 
(b) fit results of conditaionl 

sampling 

 
(c) fit results of scratch 

sampling 
Fig. 9. Comparisons of intersection traffic volumes between 
ground truth and sampling trajectories.  
 

 
(a) fit results of conditaionl 

sampling 

 
(b) fit results of scratch 

sampling 

 
(c) intersection a 

 
(d) intersection b 

Fig. 10. Comparisons of hourly traffic volumes between 
ground truth and sampling trajectories.  
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Ⅴ. CONCLUSION 
This study focuses on the next location and travel time 

prediction of individual vehicles in the urban road network. To 
adapt to the spatiotemporal patterns of vehicle trajectories, we 
combine deep learning models with intensity-free TPP and 
propose a TrajTPP framework to make probabilistic 
forecasting for the next trajectory. In this model, we design 
spatial and temporal mechanisms to explore the hidden 
patterns in previous trajectories. Then, a STGRU layer is 
further proposed to integrate the spatial and temporal features 
and enhance the autoregressive capabilities. Furthermore, we 
also propose a fusion module named GRAN to incorporate 
static information with dynamic features (i.e., previous 
locations and travel times). Afterwards, an intensity-free 
learning TPP is employed to model time-varying patterns of 
vehicle trajectories, and we define a prior transition 
probability to enhance next-location prediction performance. 
According to extensive experiments from the LPR dataset in 
Changsha China, TrajTPP performs superior over advanced 
deep learning methods and neural TPPs. Beyond the 
conventional prediction task, we design a sampling-based 
simulation experiment and find that the simulated results can 
effectively capture the spatiotemporal mobility patterns of 
traffic volumes in the urban road network.  

Although our TrajTPP outperforms advanced baselines, 
there still remain several potential improvements in future 
studies. Firstly, compared with conventional deep learning 
methods, TPP has stronger interpretability, which induces 
several explainable applications, such as latent network 
discovery [57], Granger causality [58], etc. Therefore, future 
studies can explore this property in analyzing spatiotemporal 
dependencies among different intersections, which is essential 
in network-scale traffic prediction and control. Secondly, data-
driven simulation [47] has gradually become a critical topic in 
human mobility modeling. This paper has demonstrated 
TrajTPP model can cheaply achieve accurate simulation. How 
to further enhance simulation performance is an intriguing 
topic for the following studies. Furthermore, relying on the 
powerful capability in discrete modeling, it is worth applying 
TPP-based methods to other types of traffic events modeling, 
such as traffic congestion, traffic accidents, etc.  

APPENDIX 
To further demonstrate the generalizability of TrajTPP in 

the classical mobility prediction task, we also employ the 
latest benchmark [26] on the Geolife dataset [59] for next-
location prediction. To enhance fairness, we directly introduce 
the datasets and experiment results from the latest research 
[26] for evaluation. In this dataset, since there are more than 
1000 candidate locations, and the spatial correlations in this 
dataset are relatively sparse and weak, the prior information 
learning module is not involved in this experiment. 
Meanwhile, because there are only 45 users in this dataset, we 
utilize an embedding layer to represent the user preference and 
integrate it with TrajTPP via the proposed GRAN module. 
Performance comparison of TrajTPP and baselines (i.e., 1-
MMC [60], FPMC [50], LSTM, LSTM attn, DeepMove [51], 
MobTeast [61], and MHSA [26]) are shown in Table Ⅳ. More 
details of datasets and experiment settings on this benchmark 
can be found in Hong et al. [26] and our Github via 
https://github.com/SunderlandAJ-1130/TrajTPP.  

From this table, we can observe that our proposed TrajTPP 
model can achieve significant superiority over the latest 
baselines. Specifically, compared to the most advanced 
MHSA model, our model can achieve 7.64% (i.e., from 31.4 
to 33.8) and 11.47% (i.e., from 21.8 to 24.3) rises in Acc@1 
and F1, respectively. These experiment results demonstrate 
that relying on its well-designed combination of TPP and deep 
learning model, TrajTPP is more capable than conventional 
deep learning models in mobility prediction.  
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